Abstract:
Paging messages are transmitted by a wireless communications network to mobile terminals, which have been in an idle state or dormant mode and which have waiting calls/data from their associated peer entities, in accordance with the qualities of service (QoS) associated with the waiting calls/data, where the QoS associated each waiting call/data includes a type of the call/data. To make paging of mobile terminal QoS aware, a QoS field is included in the Paging Announce requests sent from an RNC to another RNC, or from an RNC to a BTS. The QoS field includes: a QoS class of service of the waiting call/data indicating the type of the waiting call; a grade of service of the waiting call/data to which the mobile terminal is subscribed; and, optionally, other QoS service flow parameters whose presence depends on the type of wireless technology being used in the network.
Abstract:
An active session mobility solution for radio link protocol (RLP) in accordance with the present invention defines two RLP migrations states. A first state is defined as a forward-link RLP state and depicts the communication of data from a home agent to an access terminal in an IP network. A second state is defined as a reverse-link RLP state and depicts the communication of data from the access terminal to the home agent in the IP network. In one embodiment of the seamless active session mobility solution for RLP in accordance with the present invention, a two-stage RLP transfer process for the migration of the two defined states from a source to a target is implemented. In a first stage, the forward-link RLP state is transferred from a source to a target. In a second stage, frame selection and the reverse-link RLP are transferred from the source to the target.
Abstract:
An active session mobility solution for radio link protocol (RLP) in accordance with the present invention defines two RLP migrations states. A first state is defined as a forward-link RLP state and depicts the communication of data from a home agent to an access terminal in an IP network. A second state is defined as a reverse-link RLP state and depicts the communication of data from the access terminal to the home agent in the IP network. In one embodiment of the seamless active session mobility solution for RLP in accordance with the present invention, a two-stage RLP transfer process for the migration of the two defined states from a source to a target is implemented. In a first stage, the forward-link RLP state is transferred from a source to a target. In a second stage, frame selection and the reverse-link RLP are transferred from the source to the target.
Abstract:
An active session mobility solution for point-to-point protocol (PPP) in accordance with the present invention provides fast and smooth handoff by reducing tunneling overhead on tunneling mechanisms, such as P-P tunneling from a serving Source (e.g., a PPP termination device) to a new serving Target (e.g., a PPP termination device). In the active session mobility solution of the present invention, PPP session can be migrated even if not all phases have been completed (e.g., LCP, PAP/CHAP completed but not IPCP and CCP). In such cases, the incomplete phases will be negotiated at the PPP of the Target PPP.
Abstract:
An active session mobility solution for point-to-point protocol (PPP) in accordance with the present invention provides fast and smooth handoff by reducing tunneling overhead on tunneling mechanisms, such as P-P tunneling from a serving Source (e.g., a PPP termination device) to a new serving Target (e.g., a PPP termination device). In the active session mobility solution of the present invention, PPP session can be migrated even if not all phases have been completed (e.g., LCP, PAP/CHAP completed but not IPCP and CCP). In such cases, the incomplete phases will be negotiated at the PPP of the Target PPP.
Abstract:
A method is provided for triggering migration of call session state information. The method includes determining whether to migrate a network access agent associated with an access terminal in a wireless communication system based on at least one of mobility information associated with the access terminal and status information associated with the wireless communication system.
Abstract:
A method is provided for triggering migration of call session state information. The method includes determining whether to migrate a network access agent associated with an access terminal in a wireless communication system based on at least one of mobility information associated with the access terminal and status information associated with the wireless communication system.
Abstract:
A method is provided for triggering migration of call session state information. The method includes determining whether to migrate a network access agent associated with an access terminal in a wireless communication system based on at least one of mobility information associated with the access terminal and status information associated with the wireless communication system.