Abstract:
An active session mobility solution for radio link protocol (RLP) in accordance with the present invention defines two RLP migrations states. A first state is defined as a forward-link RLP state and depicts the communication of data from a home agent to an access terminal in an IP network. A second state is defined as a reverse-link RLP state and depicts the communication of data from the access terminal to the home agent in the IP network. In one embodiment of the seamless active session mobility solution for RLP in accordance with the present invention, a two-stage RLP transfer process for the migration of the two defined states from a source to a target is implemented. In a first stage, the forward-link RLP state is transferred from a source to a target. In a second stage, frame selection and the reverse-link RLP are transferred from the source to the target.
Abstract:
An active session mobility solution for radio link protocol (RLP) in accordance with the present invention defines two RLP migrations states. A first state is defined as a forward-link RLP state and depicts the communication of data from a home agent to an access terminal in an IP network. A second state is defined as a reverse-link RLP state and depicts the communication of data from the access terminal to the home agent in the IP network. In one embodiment of the seamless active session mobility solution for RLP in accordance with the present invention, a two-stage RLP transfer process for the migration of the two defined states from a source to a target is implemented. In a first stage, the forward-link RLP state is transferred from a source to a target. In a second stage, frame selection and the reverse-link RLP are transferred from the source to the target.
Abstract:
An active session mobility solution for point-to-point protocol (PPP) in accordance with the present invention provides fast and smooth handoff by reducing tunneling overhead on tunneling mechanisms, such as P-P tunneling from a serving Source (e.g., a PPP termination device) to a new serving Target (e.g., a PPP termination device). In the active session mobility solution of the present invention, PPP session can be migrated even if not all phases have been completed (e.g., LCP, PAP/CHAP completed but not IPCP and CCP). In such cases, the incomplete phases will be negotiated at the PPP of the Target PPP.
Abstract:
An active session mobility solution for point-to-point protocol (PPP) in accordance with the present invention provides fast and smooth handoff by reducing tunneling overhead on tunneling mechanisms, such as P-P tunneling from a serving Source (e.g., a PPP termination device) to a new serving Target (e.g., a PPP termination device). In the active session mobility solution of the present invention, PPP session can be migrated even if not all phases have been completed (e.g., LCP, PAP/CHAP completed but not IPCP and CCP). In such cases, the incomplete phases will be negotiated at the PPP of the Target PPP.
Abstract:
In a method of constructing a QuickConfig message in a Ix Evolution (IXEV) data only (EV-DO) communication network for broadcast by a base station of the network to a plurality of users served thereby, a Forward Traffic Valid (FTValid) bit in a field of the QuickConfig message is set to a default value of a logic high state for all users. No delay occurs for a call setup between a given user and the base station even if the user requests the call setup after the QuickConfig message has been constructed by the base station.