Abstract:
The invention relates to a computed tomography method in which a periodically moving object is irradiated by a conical beam bundle. An nPi-relative movement is generated between a radiation source, which generates the conical beam bundle, and the object. During the nPi-relative movement, measured values are acquired, which depend on the intensity in the beam bundle on the other side of the object and from these measured values filter values are determined, which are divided into different groups. The filter values of at least one group are weighted in dependence on the movement of the object, wherein, when filter values of several groups are weighted, filter values of different groups are weighted differently in dependence on the movement of the object. Finally, a CT image of the object is reconstructed from the filter values.
Abstract:
A system for generating a reconstruction of an object of interest comprises a shape model generator (1) for generating a shape model representing a shape of the object in dependence on a plurality of projections of the object, and a reconstructor (2) for reconstructing the object, based on the projections, in dependence on the shape model to obtain the reconstruction of the object. The reconstructor (2) comprises a soft-tissue reconstructor (4) for generating a reconstruction favoring soft tissue, based on the plurality of projections, and a sparse reconstructor (5) for generating a reconstruction of sparse objects, based on the plurality of projections. The reconstructor (2) comprises a clipping subsystem (3) for clipping an outside of the object from the reconstruction, based on the shape model, or the reconstructor (2) is arranged for reconstructing only an inside and/or boundary of the object as defined by the shape model.
Abstract:
A method and an apparatus for acquiring 3-dimensional images of coronary vessels (11), particularly of coronary veins, is proposed. 2-dimensional X-ray images (13) are acquired within a same phase of a cardiac motion. Then, a 3- dimensional centerline model (15) is generated based on these 2-dimensional images. From 2-dimensional projections of the centerline model into respective projection planes, the local diameters (w) of the vessels in the projection plane can be derived. Having the diameters, a 3-dimensional hull model of the vessel system can be generated and, optionally, 4-dimensional information about the vessel movement can be derived.
Abstract:
A method of recording images of the heart in computed tomography is provided in which, in order to prevent movement artifacts, the images are reconstructed on the basis of similar movement states of the heart and different radiation intensities are used for different movement states. During recording operation low-resolution images are continually reconstructed from the recorded data. The movement state of the heart is determined from the low- resolution images, preferably by comparing successive images. During the desired heart phase with little heart movement the power of the X-ray tube is increased. A high-resolution reconstruÌtion is carried out retrospectively from data recorded with a high radiation intensity in similar movement states with little heart movement. Also disclosed are a CT apparatus and a computer program for carrying out the method.
Abstract:
The invention relates to a computer tomography method in which an examination area is passed through by a cone-shaped bundle of rays. The bundle of rays comes from a radiation source location which moves around the examination area on an overall trajectory. The overall trajectory consists of a first, closed partial trajectory, at least one second, closed partial trajectory and at least one third partial trajectory which connects the first and the at least one second partial trajectories to one another. Measured values which depend on the intensity in the bundle of rays on the other side of the examination area are acquired by means of a detector unit while the radiation source location is moving on the overall trajectory, and a CT image of the examination area is reconstructed from these measured values.
Abstract:
The invention relates to a computed tomography method in which an examination zone is irradiated along a circular trajectory by a fan-shaped radiation beam. Radiation coherently scattered in the examination zone is measured by a detector unit, the variation in space of the scatter intensity in the examination zone being reconstructed from said measuring values. Reconstruction is performed by back projection in a volume which is defined by two linearly independent vectors of the rotational plane and a wave vector transfer.