Abstract:
A substrate includes a plurality of vias (210) that are lined with dielectric polymer (215) having a substantially uniform thickness. This substantial uniform thickness provides a lumen within each dielectric-polymer-layer-lined via that is substantially centered within the via. Subsequent deposition of metal (220) into the lumen for each dielectric-polymer-layer-lined via thus provides conductive vias having substantially centered metal conductors.
Abstract:
A fan-out wafer level package structure may include a multilayer redistribution layer (RDL). The multilayer RDL may be configured to couple with terminals of an embedded capacitor. The multilayer RDL may include sections with fewer layers than other sections of the multilayer RDL according to a selected equivalent series resistance (ESR) control pattern.
Abstract:
A method for forming a package-on-package (POP) structure is disclosed. The method includes placing a post on a first integrated circuit (IC) package such that a solder coating disposed on a first surface of the post is between the post and a second surface of the first IC package. The post is placed at a distance from a die along a particular axis of the die. The particular axis is substantially parallel to the second surface. The first IC package includes the die. The method also includes forming a conductive path between a second IC package and the first IC package via the post and a solder bump. The solder bump is disposed between the post and the second IC package.
Abstract:
A via-enabled package-on-package circuit includes a first package (316) including a first package die (310) having a plurality of through substrate vias (TSVs) (322). The TSVs are configured to carry the input/output signaling for at least one second package die (315).
Abstract:
Some features pertain to an integrated device that includes a first integrated circuit (IC) package, a flexible connector and a second integrated circuit (IC) package. The first integrated circuit (IC) package includes a first die, a plurality of first interconnects, and a first dielectric layer encapsulating the first die. The flexible connector is coupled to the first integrated circuit (IC) package. The flexible connector includes the first dielectric layer, and an interconnect. The second integrated circuit (IC) package is coupled to the flexible connector. The second integrated circuit (IC) package includes the first dielectric layer, and a plurality of second interconnects. The first integrated circuit (IC) package, the second integrated circuit (IC) package, and the flexible connector are coupled together through at least a portion (e.g., contiguous portion) of the first dielectric layer. In some implementations, the flexible connector comprises a dummy metal layer.
Abstract:
A package-on-package (PoP) structure includes a first die, a second die, and a memory device electrically coupled to the first die and the second die by an interposer between the first die and the second die. The interposer includes copper-filled vias formed within a mold.
Abstract:
Some novel features pertain to an integrated device package that includes an encapsulation portion and a redistribution portion. The encapsulation portion includes a first die, a first set of vias coupled to the first die, a second die, a second set of vias coupled to the second die, a bridge, and an encapsulation layer. The bridge is configured to provide an electrical path between the first die and the second die. The bridge is coupled to the first die through the first set of vias. The bridge is further coupled to the second die through the second set of vias. The encapsulation layer at least partially encapsulates the first die, the second die, the bridge, the first set of vias, and the second set of vias. The redistribution portion is coupled to the encapsulation portion. The redistribution portion includes a set of redistribution interconnects, and at least one dielectric layer.
Abstract:
A fan-out wafer-level-process integrated circuit is provided in which a plurality of interconnects (125) couple to pads (111) on an encapsulated (135) die (105,110). The interconnects have a pad-facing surface that couples to a corresponding pad through a seed layer (145). The seed layer does not cover the sidewalls of the interconnects.
Abstract:
An integrated device package includes a first die, a second die, an encapsulation portion coupled to the first die and the second die, and a redistribution portion coupled to the encapsulation portion. The encapsulation portion includes an encapsulation layer, a bridge, and a first via. The bridge is at least partially embedded in the encapsulation layer. The bridge is configured to provide a first electrical path for a first signal between the first die and the second die. The first via is in the encapsulation layer. The first via is coupled to the bridge. The first via and the bridge are configured to provide a second electrical path for a second signal to the first die. The redistribution portion includes at least one dielectric layer, and at least one interconnect, in the dielectric layer, coupled to the first via.
Abstract:
An integrated circuit (IC) package structure may include a substrate. The substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die. The semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate. The semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer. The first semiconductor die and the second semiconductor die are supported by the substrate and coupled together through the semiconductor bridge.