Abstract:
Electrically operated propellant thrust assist supplements an airplane's takeoff, landing or inflight maneuvers. Unlike conventional SRM propellants, the burn rate of the electrically operated propellant can be varied via an electrical input and even extinguished by interrupting the electrical to control a secondary thrust profile (e.g., amplitude, transition rates) to fulfill the needs of a given takeoff, inflight or landing maneuver and provide a smooth transition in and out of the maneuver. Multiple pairs of fixed thrusters (opposite sides of the fuselage), a single pair of gimbaled thrusters or a hybrid of fixed and gimbaled thrusters may be configured to provide all such maneuvers. Flight control inputs are passed back and forth through an interface to enable the thrust assist.
Abstract:
An effector health monitor system is configured for coupling with an energetic component. The effector health monitor system includes a characteristic sensor suite including at least first and second characteristic sensors. The first characteristic sensor is proximate to the energetic component and configured to measure a failure characteristic of the energetic component. The second characteristic sensor is configured to measure at least one environmental characteristic proximate to the energetic component. A communication hub is coupled with the first and second characteristic sensors, and is configured to communicate the measured failure and environmental characteristics outside of an effector body. A failure identification module compares the measured failure characteristic with a failure threshold and identifies a failure event. A failure model generation module logs the at least one measured environmental characteristic preceding the identified failure event with the identified failure event and generates a failure model including updating the failure model.
Abstract:
A motor assembly (10) is provided for use with projectiles, such as munitions, having relatively low length to diameter ratios. The motor assembly has an aerospike nozzle (42) and a casing disposed about the aerospike nozzle, where interior aerospike volume contains propellant and where walls of both the cowl of the casing and of the aerospike nozzle jointly define a combustion chamber (90).
Abstract:
Microwave energy is used to ignite and control the ignition of electrically operated propellant to produce high-pressure gas. The propellant includes conductive particles that act as a free source of electrons. Incoming microwave energy accumulates electric charge in an attenuation zone, which is discharged in the form of dielectric breakdowns to create local randomly oriented currents. The propellant also includes polar molecules. The polar molecules in the attenuation zone absorb microwave energy causing the molecules to rapidly vibrate thereby increasing the temperature of the propellant. The increase in temperature and the local current densities together establish an ignition condition to ignite and sustain ignition of an ignition surface of the attenuation zone as the zone regresses without igniting the remaining bulk of the propellant.
Abstract:
A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract translation:推进器包括多个电动推进剂段,用于一次点燃一个或几个电动推进剂段的电极,以及推进剂供给器,用于将另外的推进剂段移动到与 电极。 这些段可以被配置成提供相等的推力增量或不同的推力量。 这些区段可以各自包括由密封材料围绕的电操作推进剂材料,以便在每个单独的区段将被使用之前使推进剂材料远离湿气和其他污染物(和/或空间的真空)。 推进器可以包括在各种飞行器中的任何一种中,例如在诸如CubeSat卫星的小卫星中,例如具有大约1升的体积和不大于大约1.33kg的质量。 p >
Abstract:
A rocket motor has a nozzle that is reconfigurable by erosion or ablation of the material around the throat of the nozzle. The nozzle throat has layers of materials with different erosion characteristics, with the erosion occurring so as to achieve the desired nozzle characteristics (configurations) during different parts of the fuel burn. The nozzle throat includes relatively-high-erosion material layers and relatively-low-erosion material layers, with some layers of the throat resisting erosion, while other of the layers erode or ablate relatively quickly. The relatively-low-erosion material layers may act as thermal barriers to fix the throat at relatively stable geometry for long periods of time, such as during most of the burn of different fuel segments, with the relatively-high-erosion material layers allowing rapid transition of the throat from one geometry to the next. The layers may be made by resin transfer molding (RTM).
Abstract:
Electrical ignition of electrically operated propellant in a gas generation system provides an ignition condition at an ignition surface between a pair of electrodes that satisfies three criteria of a current density J that exhibits a decreasing gradient along an axis normal to an ignition surface, is substantially constant across the ignition surface and exceeds an ignition threshold at the ignition surface. These criteria may be satisfied by one or more of an angled electrode configuration, a segmented electrode configuration or an additive to the electrically operated propellant that modifies its conductivity. These configurations improve burn rate control and consumption of the available propellant and are scalable to greater propellant mass to support larger gas generation systems.
Abstract:
A gas generation system for generating gases, such as for use as or as part of a rocket motor in propelling a projectile, includes two or more propellant charges and electrically operated propellant initiators operatively coupled to respective of the propellant charges, to initiate combustion in the propellant charges, wherein the propellant charges are operatively isolated from one another such that the propellant charges can be individually initiated and are not ignited due to gases generated from other of the propellant charges being combusted.