Abstract:
A simple, fast, selective and highly sensitive electrochemical method assay and disposable device for detection of viruses, bacteria, proteins, DNA, and/or organic/inorganic compounds. The sensor has a multi-layered construction, with each successive layer performing a different function. The design further allows for the packing of numerous microscopic electrode transducers onto the small footprint of a biochip device, allowing for a high-density array of sensors.
Abstract:
Novel compounds generally referred to herein as cationic oligomeric phenylene ethynylenes (OPEs), methods of synthesizing OPEs and various uses for the OPEs are described. The compounds can be synthesized in both symmetrical (S-OPE) and non- symmetrical (N-OPE) forms. Suitable uses include sensor and biocidal applications. Reusable structures incorporating the OPEs that are able to capture and release biological species of interest are also described.
Abstract:
A simple, fast, selective and highly sensitive electrochemical method assay and disposable device for detection of viruses, bacteria, proteins, DNA, and/or organic/inorganic compounds. The sensor has a multi-layered construction, with each successive layer performing a different function. The design further allows for the packing of numerous microscopic electrode transducers onto the small footprint of a biochip device, allowing for a high-density array of sensors.
Abstract:
The present invention provides a coating composition comprising: A coating composition comprising: TEOS; a surfactant; at least one organosilane; HCl; water; and ethanol. The present invention also provides films made from such a coating composition and a method for making such films.
Abstract:
The present invention provides a coating composition comprising: A coating composition comprising: TEOS; a surfactant; at least one organosilane; HCl; water; and ethanol. The present invention also provides films made from such a coating composition and a method for making such films.
Abstract:
We describe methods for synthesis and formulations of stable elastomeric negative acoustic contrast particles with controllable compressibility and density. These elastomeric negative acoustic contrast particles have a density/compressibility ratio that is less than that of water and therefore exhibit negative acoustic contrast under acoustic radiation exposure. This negative acoustic contrast allows our elastomeric negative acoustic contrast particles to be acoustically manipulated (e.g. separated) differently from other components (e.g. cells) within an aqueous solution. This disclosure also describes methods for biofunctionalization of the elastomeric negative acoustic contrast particles and as an example their use as platforms for bioassays. Potential applications of these elastomeric negative acoustic contrast particles include sensitive bioassays based on acoustic flow cytometry and other types of techniques that utilize acoustic fields, including ultrasound imaging and ultrasound triggered drug delivery.
Abstract:
We describe methods for synthesis and formulations of stable elastomeric negative acoustic contrast particles with controllable compressibility and density. These elastomeric negative acoustic contrast particles have a density/compressibility ratio that is less than that of water and therefore exhibit negative acoustic contrast under acoustic radiation exposure. This negative acoustic contrast allows our elastomeric negative acoustic contrast particles to be acoustically manipulated (e.g. separated) differently from other components (e.g. cells) within an aqueous solution. This disclosure also describes methods for biofunctionalization of the elastomeric negative acoustic contrast particles and as an example their use as platforms for bioassays. Potential applications of these elastomeric negative acoustic contrast particles include sensitive bioassays based on acoustic flow cytometry and other types of techniques that utilize acoustic fields, including ultrasound imaging and ultrasound triggered drug delivery.
Abstract:
Novel compounds generally referred to herein as cationic oligomeric phenylene ethynylenes (OPEs), methods of synthesizing OPEs and various uses for the OPEs are described. The compounds can be synthesized in both symmetrical (S-OPE) and non- symmetrical (N-OPE) forms. Suitable uses include sensor and biocidal applications. Reusable structures incorporating the OPEs that are able to capture and release biological species of interest are also described.