Abstract:
An electrostatic micromotor (10') is provided with a fixed substrate (12), a mobile substrate (13) facing the fixed substrate (12), and electrostatic-interaction elements (14, 15, 17) enabling a relative movement of the mobile substrate (3) with respect to the fixed substrate (2) in a movement direction (x); the electrostatic micromotor is also provided with a capacitive position-sensing structure (18') configured to enable sensing of a relative position of the mobile substrate (13) with respect to the fixed substrate (12) in the movement direction (x). The capacitive position-sensing structure (18') is formed by at least one sensing indentation (22), extending within the mobile substrate (13) from a first surface (13a; 13b) thereof, and by at least one first sensing electrode (24), facing, in at least one given operating condition, the sensing indentation (22).
Abstract:
In a pressure sensor (15) with double measuring scale: a monolithic body (16) of semiconductor material has a first main surface (16a), a bulk region (17) and a sensitive portion (33) upon which pressure (P) acts; a cavity (18) is formed in the monolithic body (16) and is separated from the first main surface (16a) by a membrane (19), which is flexible and deformable as a function of the pressure (P), and is arranged inside the sensitive portion (33) and is surrounded by the bulk region (17); a low-pressure detecting element (28) of the piezoresistive type, sensitive to first values of pressure (P), is integrated in the membrane (19) and has a variable resistance as a function of the deformation of the membrane (19); in addition, a high-pressure detecting element (29), also of a piezoresistive type, is formed in the bulk region (17) inside the sensitive portion (33) and has a variable resistance as a function of the pressure (P). The highpressure detecting element (29) is sensitive to second values of pressure (P).
Abstract:
In a pressure sensor (15) with double measuring scale: a monolithic body (16) of semiconductor material has a first main surface (16a), a bulk region (17) and a sensitive portion (33) upon which pressure (P) acts; a cavity (18) is formed in the monolithic body (16) and is separated from the first main surface (16a) by a membrane (19), which is flexible and deformable as a function of the pressure (P), and is arranged inside the sensitive portion (33) and is surrounded by the bulk region (17); a low-pressure detecting element (28) of the piezoresistive type, sensitive to first values of pressure (P), is integrated in the membrane (19) and has a variable resistance as a function of the deformation of the membrane (19); in addition, a high-pressure detecting element (29), also of a piezoresistive type, is formed in the bulk region (17) inside the sensitive portion (33) and has a variable resistance as a function of the pressure (P). The highpressure detecting element (29) is sensitive to second values of pressure (P).
Abstract:
The apparatus for the generation of thermal energy according to this invention comprises: a) a first quantity (MA) in solid form of a first material suitable to absorb hydrogen with ensuing generation of thermal energy, b) a second quantity (CO) in solid form of a second material suitable to release hydrogen at a temperature higher than a prefixed temperature, at least partly in contact with said first quantity (MA), and c) a third quantity (ET) in solid form of a third material, suitable for the generation of thermal energy when it is submitted to the passage of electric current, so located as to be thermally coupled with said second quantity (CO).
Abstract:
In a pressure sensor (15) with double measuring scale: a monolithic body (16) of semiconductor material has a first main surface (16a), a bulk region (17) and a sensitive portion (33) upon which pressure (P) acts; a cavity (18) is formed in the monolithic body (16) and is separated from the first main surface (16a) by a membrane (19), which is flexible and deformable as a function of the pressure (P), and is arranged inside the sensitive portion (33) and is surrounded by the bulk region (17); a low-pressure detecting element (28) of the piezoresistive type, sensitive to first values of pressure (P), is integrated in the membrane (19) and has a variable resistance as a function of the deformation of the membrane (19); in addition, a high-pressure detecting element (29), also of a piezoresistive type, is formed in the bulk region (17) inside the sensitive portion (33) and has a variable resistance as a function of the pressure (P). The highpressure detecting element (29) is sensitive to second values of pressure (P).
Abstract:
An integrated device for nucleic acid analysis having a support (10) and a first tank (8) for introducing a raw biological specimen includes at least one pre -treatment channel (17), a buried amplification chamber (21), and a detection chamber (24) carried by the support (10) and in fluid connection with one another and with the tank (8). The device can be used for all types of biological analyses.
Abstract:
An electrostatic micromotor (10') is provided with a fixed substrate (12), a mobile substrate (13) facing the fixed substrate (12), and electrostatic-interaction elements (14, 15, 17) enabling a relative movement of the mobile substrate (3) with respect to the fixed substrate (2) in a movement direction (x); the electrostatic micromotor is also provided with a capacitive position-sensing structure (18') configured to enable sensing of a relative position of the mobile substrate (13) with respect to the fixed substrate (12) in the movement direction (x). The capacitive position-sensing structure (18') is formed by at least one sensing indentation (22), extending within the mobile substrate (13) from a first surface (13a; 13b) thereof, and by at least one first sensing electrode (24), facing, in at least one given operating condition, the sensing indentation (22).
Abstract:
The invention relates to a method and an apparatus for generating thermal energy from a cold nuclear fusion reaction by having at least a first hydrogen-absorbing material (3) placed either under a high hydrogen content atmosphere or in contact with a hydrogen-releasing material. The method comprises an initial step of heating to a predetermined reaction-initiating temperature, and a second or concurrent step of applying a predetermined sequence of current pulses to the first material. By adjustment of the pulse strength or frequency, the excess thermal energy produced by the reaction can be adjusted.
Abstract:
The monolithically integrated device according to this invention comprises a first substrate (SUB) and, at least in a portion: a) a first structure (ST1) of a first material in solid form suitable to absorb hydrogen with ensuing generation of thermal energy, superposed to said substrate (SUB); b) a second structure (ST2) of a second material in solid form suitable to release hydrogen when it reaches a temperature higher than a prefixed temperature, superposed to said substrate (SUB); c) a third structure (ST3) of a third material in solid form suitable to generate thermal energy when it is submitted to the passage of electric current, so placed as to be thermally coupled at least to said second structure (ST2); wherein said first structure (ST1) and said second structure (ST2) are in contact, at least partly, with one another.