Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterised by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterised by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
A non-mechanical valve (3) for controlling the flow of fluidisable solids is disclosed. The valve (3) comprises a pipe having an upstream leg (5) with a solids inlet (13) at an upper end, a downstream leg (7) with a solids outlet (14) at an upper end, and a base section (9) interconnecting lower ends of the legs (5, 7). The valve (3) further comprises a means for introducing aeration gas into each of the legs (5, 7) to maintain fluidised flow of solids through the valve (3) and a means for adjusting the flow of aeration gas to the legs (5, 7) to control the solids flow through the valve (3).
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterised by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterised by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal lay er and a slag layer is disclosed. The method is characterised by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bat h or from above the molten bath so that the solids penetrate the molten bath a nd cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterised by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterized by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterized by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterized by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterized by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterized by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterized by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.