Abstract:
A process for at least partially reducing iron oxides comprises forming a bed of reactants on a hearth of a rotary hearth furnace, the reactants comprising (a) mixture of iron ore fines and particulate carbonaceous material and/or (b) micro-agglomerates of iron ore fines and particulate carbonaceous material. The mixture and/or the micro-agglomerates are heated in the rotary hearth furnace to at least reduce the iron oxides. The "micro-agglomerates" are agglomerates that are less than 1400 microns (and preferably more than 500 microns) in diameter. The at least partially reduced product is preferably used in the production of metallic iron. An apparatus for at least partially reducing iron oxides is also claimed. The process permits operation of the rotary hearth furnace without requiring pelletisation of iron oxide fines and coal.
Abstract:
The production of highly metallised feed, an intermediate product produced solely by gaseous reductants in two stage reduction processes of that kind, encounters sticking problems, which interfere with continuous processing and productivity. This problem has been overcome by exploiting a high volatile carbonaceous material, such as coal, as the reducing agent for the (partially reduced) oxide ore starting material in the solid state prereduction stage of a duplex process, in which the final stage consists of smelting, to produce the final metal (alloy). Intermediate products of the first stage are char from the coal, which avoids the sticking problem, partially reduced ore and CO and H2, which participate in the prereduction. The process has particular application to iron ores, such as haematite and magnetite and similar derivatives, namely, chromite and oxidic nickel ores. The process may be extended to a triplex, which includes drying, preheating and partial reduction in the first stage, followed by further partial reduction and finally the smelting step. Plant for the process may consist of a shaft furnace or fluidised bed for the prereduction sequence, preferably the latter. For the triplex process, two associated fluidised beds (3, 5) are preferred. Any suitable furnace (7) may be used for smelting, as long as it is equipped for the injection of partially reduced ore, char and fluxes, hot air lancing, off gas and the tapping of molten metal and slag. The final stage of solid state reduction takes place at a temperature of at least 550 DEG C, preferably 750-900 DEG C. At least 50 % of metallisation is essential for satisfactory processing, preferably at least 80 %.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterised by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterised by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
Abstract:
The production of highly metallized feed, an intermediate product produced solely by gaseous reductants in two stage reduction processes of that kind, encounters sticking problems, which interfere with continuous processing and productivity. This problem has been overcome by exploiting a high volatile carbonaceous material, such as coal, as the reducing agent for the (partially reduced) oxide ore starting material in the solid state prereduction stage of a duplex process, in which the final stage consists of smelting, to produce the final metal (alloy). Intermediate products of the first stage are char from the coal, which avoids the sticking problem, partially reduced ore and CO and H2, which participate in the prereduction. The process has particular application to iron ores, such as haematite and magnetite and similar derivatives, namely, chromite and oxidic nickel ores. The process may be extended to a triplex, which includes drying, preheating and partial reduction in the first stage, followed by further partial reduction and finally the smelting step. The final stage of solid state reduction takes place at a temperature of at least 550° C., preferably 750-900° C. At least 50% of metallization is essential for satisfactory processing, preferably at least 80%.
Abstract:
The production of highly metallized feed, an intermediate product produced solely by gaseous reductants in two stage reduction processes of that kind, encounters sticking problems, which interfere with continuous processing and productivity. This problem has been overcome by exploiting a high volatile carbonaceous material, such as coal, as the reducing agent for the (partially reduced) oxide ore starting material in the solid state prereduction stage of a duplex process, in which the final stage consists of smelting, to produce the final metal (alloy). Intermediate products of the first stage are char from the coal, which avoids the sticking problem, partially reduced ore and CO and H2, which participate in the prereduction. The process has particular application to iron ores, such as haematite and magnetite and similar derivatives, namely, chromite and oxidic nickel ores. The process may be extended to a triplex, which includes drying, preheating and partial reduction in the first stage, followed by further partial reduction and finally the smelting step. The final stage of solid state reduction takes place at a temperature of at least 550° C., preferably 750-900° C. At least 50% of metallization is essential for satisfactory processing, preferably at least 80%.
Abstract:
PCT No. PCT/AU96/00496 Sec. 371 Date Jun. 5, 1998 Sec. 102(e) Date Jun. 5, 1998 PCT Filed Aug. 7, 1996 PCT Pub. No. WO97/06281 PCT Pub. Date Feb. 20, 1997A process for at least partially reducing iron oxides comprises forming a bed of reactants on a hearth of a rotary hearth furnace, the reactants comprising (a) mixture of iron ore fines and particulate carbonaceous material and/or (b) micro-agglomerates of iron ore fines and particulate carbonaceous material. The mixture and/or the micro-agglomerates are heated in the rotary hearth furnace to at least reduce the iron oxides. The "micro-agglomerates" are agglomerates that are less than 1400 microns (and preferably more than 500 microns) in diameter. The at least partially reduced product is preferably used in the production of metallic iron. An apparatus for at least partially reducing iron oxides is also claimed. The process permits operation of the rotary hearth furnace without requiring pelletisation of iron oxides fines and coal.
Abstract:
PCT No. PCT/AU96/00496 Sec. 371 Date Jun. 5, 1998 Sec. 102(e) Date Jun. 5, 1998 PCT Filed Aug. 7, 1996 PCT Pub. No. WO97/06281 PCT Pub. Date Feb. 20, 1997A process for at least partially reducing iron oxides comprises forming a bed of reactants on a hearth of a rotary hearth furnace, the reactants comprising (a) mixture of iron ore fines and particulate carbonaceous material and/or (b) micro-agglomerates of iron ore fines and particulate carbonaceous material. The mixture and/or the micro-agglomerates are heated in the rotary hearth furnace to at least reduce the iron oxides. The "micro-agglomerates" are agglomerates that are less than 1400 microns (and preferably more than 500 microns) in diameter. The at least partially reduced product is preferably used in the production of metallic iron. An apparatus for at least partially reducing iron oxides is also claimed. The process permits operation of the rotary hearth furnace without requiring pelletisation of iron oxides fines and coal.
Abstract:
A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterised by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterised by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.