Abstract:
A method of manufacturing a fan blade includes providing a metallic fan blade body, and applying at least a 200 volt potential to the fan blade body in a solution to produce a crystalline oxidation layer. A fan blade for a gas turbine engine includes a metallic fan blade body having a tip with a crystalline oxidation layer. A fan blade for a gas turbine engine includes a metallic fan blade body having a tip with a titanium dioxide layer.
Abstract:
A non-burning Ti-V-Cr alloy which is heat treated to decrease its susceptibility to embrittlement in gas turbine engine compressor applications. The invention heat treat cycle consists of an isothermal holding period below the alpha solvus temperature, a slow ramp down to a lower temperature, a second holding period at a lower temperature, a third ramp down to an even lower temperature, and a final holding period at the third temperature. Other suitable heat treat cycles within the concept of the invention include a single holding period below the alpha solvus temperature double holding periods below the alpha solvus temperature with a ramp from a higher to a lower temperature and a continuous ramp below the alpha solvus temperature with no holding period.
Abstract:
An airfoil includes an airfoil body that extends at least between leading and trailing edges, first and second sides, and radially inner and outer ends. The airfoil body includes an aluminum alloy that has a controlled crystallographic texture with respect to a predefined three-dimensional coordinate system. The airfoil can be used in the fan of a gas turbine engine.
Abstract:
An airfoil member (100) comprising has a substrate (120) along at least a portion of an airfoil (102) of the airfoil member. A sheath (122) has a channel (144) receiving a portion (160) of the substrate. A scrim (200) is between the substrate and the sheath. A spacer (220) is between the sheath and the substrate and has a plurality of spaced-apart portions (232, 234) with gaps between the spaced-apart portions.
Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.
Abstract:
A non-burning Ti-V-Cr alloy which is heat treated to decrease its susceptibility to embrittlement in gas turbine engine compressor applications. The invention heat treat cycle consists of an isothermal holding period below the alpha solvus temperature, a slow ramp down to a lower temperature, a second holding period at a lower temperature, a third ramp down to an even lower temperature, and a final holding period at the third temperature. Other suitable heat treat cycles within the concept of the invention include a single holding period below the alpha solvus temperature double holding periods below the alpha solvus temperature with a ramp from a higher to a lower temperature and a continuous ramp below the alpha solvus temperature with no holding period.
Abstract:
A non-burning Ti-V-Cr alloy which is heat treated to decrease its susceptibility to embrittlement in gas turbine engine compressor applications. The invention heat treat cycle consists of an isothermal holding period below the alpha solvus temperature, a slow ramp down to a lower temperature, a second holding period at a lower temperature, a third ramp down to an even lower temperature, and a final holding period at the third temperature. Other suitable heat treat cycles within the concept of the invention include a single holding period below the alpha solvus temperature double holding periods below the alpha solvus temperature with a ramp from a higher to a lower temperature and a continuous ramp below the alpha solvus temperature with no holding period.
Abstract:
A non-burning Ti-V-Cr alloy which is heat treated to decrease its susceptibility to embrittlement in gas turbine engine compressor applications. The invention heat treat cycle consists of an isothermal holding period below the alpha solvus temperature, a slow ramp down to a lower temperature, a second holding period at a lower temperature, a third ramp down to an even lower temperature, and a final holding period at the third temperature. Other suitable heat treat cycles within the concept of the invention include a single holding period below the alpha solvus temperature double holding periods below the alpha solvus temperature with a ramp from a higher to a lower temperature and a continuous ramp below the alpha solvus temperature with no holding period.