Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.
Abstract:
A fan rotor includes a rotor body with at least one slot receiving a fan blade. The fan blade has an outer surface, at least at some areas, formed of a first material and an airfoil extending from a dovetail. The dovetail is received in the slot. A spacer is positioned radially inwardly of the dovetail biasing the fan blade against the slot. The spacer includes a grounding element, which is in contact with a portion of the dovetail formed of a second material that is more electrically conductive than the first material. The grounding element is in contact with a rotating element that rotates with the rotor. The rotating element is formed of a third material. The first material is less electrically conductive than the third material. The grounding and rotating elements form a ground path from the portion of the dovetail into the rotor.
Abstract:
A fan blade is disclosed comprising a lightweight metallic airfoil portion and a high-strength sheath portion. The airfoil portion has a forward airfoil edge, a first airfoil surface, and a second airfoil surface. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface.Fig 2.
Abstract:
A blade comprises an airfoil extending from a trailing edge to a leading edge. The airfoil includes a body formed of an aluminum containing material. A sheath is at the leading edge and is formed of a titanium containing material. A sandwich is positioned intermediate the sheath and the airfoil body, the sandwich including an outer adhesive layer adjacent the sheath, an intermediate fabric layer and an inner adhesive layer adjacent the body. A gas turbine engine is also disclosed.
Abstract:
A rotor assembly is provided that includes a rotor blade, a root spacer, and a rotor disk with a slot. The rotor blade includes a blade root arranged within the slot. The blade root includes a root base segment and a pair of root side segments. The root base segment is laterally separated from the rotor disk by the root side segments. The root spacer is arranged within the slot, and includes a side surface that extends radially between an inner surface and an outer surface. The side surface is approximately laterally aligned with an intersection between the root base segment and a first of the root side segments. The outer surface engages the root base segment.
Abstract:
A blade has an airfoil extending radially outwardly of a dovetail. The dovetail has edges that will be at circumferential sides of the blade when the blade is mounted within a rotor. A bottom surface of the dovetail will be radially inward when the rotor blade is mounted in a rotor, and is formed such that a circumferentially central portion of the bottom surface is radially thicker than are circumferential edges. A fan and a gas turbine engine are also described.
Abstract:
An assembly includes a rotor disk, a rotor blade and a root spacer. The rotor disk includes a slot that extends longitudinally into the rotor disk. The rotor blade includes a blade root arranged within the slot. The root spacer is arranged with the slot between the rotor disk and the blade root. The root spacer extends longitudinally to a spacer end, and includes a grip element and a plurality of notches. The grip element is arranged at the spacer end laterally between the notches. The grip element at least partially defines the notches. The notches extend radially and longitudinally into the root spacer.