Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.
Abstract:
A fan blade is disclosed comprising a lightweight metallic airfoil portion and a high-strength sheath portion. The airfoil portion has a forward airfoil edge, a first airfoil surface, and a second airfoil surface. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface.Fig 2.
Abstract:
A blade includes a hollow metal airfoil having an opening to an internal cavity in a first major surface. A metal cover is adhesively bonded to a socket formed around the opening. The cover encloses the cavity and provides a continuous first major surface.(Figure 3B)
Abstract:
A rotor assembly is provided that includes a rotor blade, a root spacer, and a rotor disk with a slot. The rotor blade includes a blade root arranged within the slot. The blade root includes a root base segment and a pair of root side segments. The root base segment is laterally separated from the rotor disk by the root side segments. The root spacer is arranged within the slot, and includes a side surface that extends radially between an inner surface and an outer surface. The side surface is approximately laterally aligned with an intersection between the root base segment and a first of the root side segments. The outer surface engages the root base segment.
Abstract:
A spacer for use in a hub and blade assembly of a gas turbine engine including a first layer of a first material forming the spacer body having an elongate shape. The first material has a first stiffness. A second layer of a second material is mechanically attached to the first layer. The second material has a second stiffness different from the first stiffness.
Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.