Abstract:
A turbomachinery component includes a surface exposed to hot working fluid flow. The surface has an undulating contour formed from a series of alternating protuberances and troughs. A set of three cooling outlets is associated with each trough.
Abstract:
A gas turbine engine airfoil includes an airfoil structure including an exterior surface that is provided by an exterior wall that has a leading edge. A radially extending interior wall within the airfoil structure separates first and second radial cooling passages. The first cooling passage is arranged near the leading edge. A radially extending trench is in the leading edge. An impingement hole is provided in the interior wall and is configured to direct a cooling fluid from the second cooling passage to the first cooling passage and onto the exterior wall at the leading edge.
Abstract:
A gas turbine engine with an adjustable vane includes a platform with a hole and an aperture. A vane is supported for rotation relative to the platform by a trunion that is received in the hole. The vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture. The vane includes an airfoil with a cooling passage in fluid communication with the opening.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A camber line at the tip extends from the leading edge to the trailing edge. Pressure and suction side shelves are arranged in the exterior surface on opposing sides of the camber line respectively in the pressure and suction side walls. A plateau is proud of and separates the pressure and suction side shelves. The plateau is arranged along the camber line and extends to the leading edge.
Abstract:
In one example embodiment, a blade includes an attachment region, an airfoil extending from the attachment region, and a blade cooling arrangement. The blade cooling arrangement includes at least a first feed passage disposed through the attachment region, which is connected to a first cooling passage disposed in the airfoil. A passively actuated first coolant valve is disposed in or proximate the first feed passage. A plurality of such blades can be disposed in a turbine section of an engine.
Abstract:
This disclosure relates to a gas turbine engine. The engine includes a component having a first wall and a second wall spaced-apart from the first wall. The component further includes a cooling passageway provided in part by a helical wall between the first wall and the second wall.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a wall that forms a portion of an outer periphery of at least one cavity and at least one curved turbulator that extends from said wall.
Abstract:
An airfoil includes a suction surface, a pressure surface, a first showerhead cooling hole and a second showerhead cooling hole. The suction surface and the pressure surface both extend axially between a leading edge and a trailing edge, as well as radially from a root section to a tip section. The first showerhead cooling hole and the second showerhead cooling hole both extend into pressure surface near the leading edge. The first showerhead cooling hole and the second showerhead cooling hole are angled in opposing directions.
Abstract:
One exemplary embodiment of this disclosure relates to a method of forming an engine component. The method includes forming an engine component having an internal passageway, the internal passageway formed with an initial dimension. The method further includes establishing a flow of machining fluid within the internal passageway, the machining fluid changing the initial dimension.