Abstract:
A gas turbine engine component includes spaced apart walls that extend in a load direction and provide a cooling passage. The cooling passage provides a tortuous passage having a generally straight portion that extends in the load direction and a bend transverse to the load direction. Elongated turbulators protrude from at least one of the walls and extend substantially in the load direction. The elongated turbulators are substantially within the generally straight portion.
Abstract:
In one example embodiment, a blade includes an attachment region, an airfoil extending from the attachment region, and a blade cooling arrangement. The blade cooling arrangement includes at least a first feed passage disposed through the attachment region, which is connected to a first cooling passage disposed in the airfoil. A passively actuated first coolant valve is disposed in or proximate the first feed passage. A plurality of such blades can be disposed in a turbine section of an engine.
Abstract:
A gas turbine engine component comprises an airfoil with a suction side and pressure side extending from a leading edge to a trailing edge. There are a plurality of cooling holes adjacent the leading edge, with the cooling holes having a non-circular shape, with a longer dimension and a smaller dimension. The airfoil defines a radial direction from a radially outer end to a radially inner end, and radially outer of the cooling holes spaced toward the radially outer end, which have the longer dimension extending closer to parallel to the radial direction. Radially inner cooling holes closer to the radially inner end having the longer dimension extend to be closer to perpendicular relative to the radial direction compared to the radially outer cooling holes.
Abstract:
A gas turbine engine component comprises a body extending between two ends and having at least two cooling passages. The body has a first wall and second wall. At least two cooling passages include a first passage that is closer to the first wall than is a second of the passages at upstream locations along a flow path. The second passage has upstream locations that are closer to the second wall than are upstream portions of the first passage. The first and second passages cross along a length of the flow path such that downstream portions of the second passage are closer to the first wall than are downstream portions of the first passage, and downstream portions of the first passage are closer to the second wall than are downstream portions of the second passage.
Abstract:
In a featured embodiment, a lost core assembly includes a ceramic component having a tapered shape in a radial direction. A refractory metal component extends radially from the ceramic core component. A method of molding a gas turbine engine component is also disclosed.
Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
In a featured embodiment, a lost core assembly includes a ceramic component having a tapered shape in a radial direction. A refractory metal component extends radially from the ceramic core component. A method of molding a gas turbine engine component is also disclosed.
Abstract:
A gas turbine engine component includes spaced apart walls that extend in a load direction and provide a cooling passage. The cooling passage provides a tortuous passage having a generally straight portion that extends in the load direction and a bend transverse to the load direction. Elongated turbulators protrude from at least one of the walls and extend substantially in the load direction. The elongated turbulators are substantially within the generally straight portion.