Abstract:
Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
Abstract:
This present invention relates to bus bar configurations and fabrication methods of non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices. The optical device comprises a first side, a second side, and a third side adjacent to the second side and two bus bars spanning a portion of the optical device.
Abstract:
Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
Abstract:
Un método para fabricar un dispositivo óptico que comprende una o más capas de material que comprende al menos un material ópticamente cambiable intercalado entre una primera y una segunda capa conductora, donde el método comprende: (i) recibir un sustrato que comprende la primera capa conductora sobre su superficie de trabajo; (ii) eliminar la primera capa conductora de una primera área en la periferia del sustrato, donde la primera área tiene un primer ancho a lo largo del perímetro del sustrato y que se extiende entre el 10% y el 90% del perímetro del sustrato; (iii) depositar dichas una o más capas de material del dispositivo óptico y la segunda capa conductora de manera que cubran la primera capa conductora y se extiendan más allá de la primera capa conductora alrededor del perímetro de la primera capa conductora en la primera área en la periferia del sustrato; (iv) eliminar el material hasta el sustrato o una barrera de difusión, si está presente, desde una segunda área en la periferia del sustrato, la segunda área dentro de la primera área, la extracción a lo largo de un segundo ancho, más estrecho que el primer ancho, y sustancialmente a lo largo de todo el perímetro del sustrato; (v) fabricar una parte expuesta de la primera capa conductora eliminando la segunda capa conductora y la una o más capas de material del dispositivo óptico debajo de la misma, que revela así la parte expuesta de la primera capa conductora; y (vi) aplicar una primera barra colectora a la segunda capa conductora en una parte que no cubre la primera capa conductora y aplicar una segunda barra colectora a la parte expuesta de la primera capa conductora, en la que al menos una de la primera y segunda capas conductoras es transparente.
Abstract:
Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
Abstract:
This present invention relates to bus bar configurations and fabrication methods of non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices. The optical device comprises a first side, a second side, and a third side adjacent to the second side and two bus bars spanning a portion of the optical device.
Abstract:
This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
Abstract:
Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.