Abstract:
The present invention is directed to a method of visually obscuring a visible defect within the viewable area of an electrochromic window having an electrochromic light comprising an electrochromic device coating disposed on a substrate.
Abstract:
Methods and apparatus for fabricating pressure compensated insulated glass units (IGUs). In one example, a method assembles an IGU from a first lite, a second lite and a spacer registered with and between the first and second lite, while at least the space between the first and second lites and within the perimeter of the spacer contains a heated or cooled inert gas. In another example, a method provides a vented IGU, heats or cools the vented IGU, introduces inert gas into the interior volume of the vented IGU, and seals vent ports before the IGU comes to ambient temperature. In another example, a method introduces or removes inert gas from an IGU by penetrating a seal of the IGU and then reseals the IGU. In another example, an apparatus for fabricating an IGU comprises a temperature control unit configured to heat or cool an inert gas and an IGU press wherein the apparatus is configured to introduce a heated inert gas or a cooled inert gas into the IGU as the hermetic seal of the IGU is formed.
Abstract:
Methods for protecting transparent electronically conductive layers on glass substrates are described herein. Methods include depositing a sacrificial coating during deposition of the transparent electronically conductive layer, before packing the glass substrate for storage or shipping, after unpacking glass substrates from a stack of glass substrates, and/or after a washing operation prior to fabricating an electrochromic stack on the transparent electronically conductive layer. Methods also include removing the sacrificial coating during a washing operation, during tempering, or prior to depositing an electrochromic stack by, e.g., heating the sacrificial coating or exposing the sacrificial coating to an inert plasma.
Abstract:
Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
Abstract:
This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
Abstract:
Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
Abstract:
Methods and apparatus for fabricating pressure compensated insulated glass units (IGUs). In one example, a method assembles an IGU from a first lite, a second lite and a spacer registered with and between the first and second lite, while at least the space between the first and second lites and within the perimeter of the spacer contains a heated or cooled inert gas. In another example, a method provides a vented IGU, heats or cools the vented IGU, introduces inert gas into the interior volume of the vented IGU, and seals vent ports before the IGU comes to ambient temperature. In another example, a method introduces or removes inert gas from an IGU by penetrating a seal of the IGU and then reseals the IGU. In another example, an apparatus for fabricating an IGU comprises a temperature control unit configured to heat or cool an inert gas and an IGU press wherein the apparatus is configured to introduce a heated inert gas or a cooled inert gas into the IGU as the hermetic seal of the IGU is formed.