Abstract:
A method and system(10) are presented for producing exciting radiation (P’) to be used in producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium (12). An input spectral phase coherent optical pulse (P), carrying a pump, a Stokes and a probe photon, is optically processed by adjusting spectral phase and polarization of wavelength components of the input pulse to produce a unitary optical exciting pulse (P’) that carries the pump photon, the Stokes photon and multiple probe photons and is capable of inducing interference between contributions from at least some of vibrational levels in the CARS signal.
Abstract:
A method and device are provided for automatically generating a key and a conjugate key to be used in an optical code division multiple access system. The method comprises applying a down conversion process to pump input light to thereby produce down converted broadband signal and idler fields that are complex conjugates of each other. The signal and idler fields thus serve as the key and its conjugate. Also provided according to the invention is a method for use in coding/decoding a signal in an optical code division multiple access system.
Abstract:
An optical system and method are presented for use in a multi-photon microscope. The system comprises an imaging lens arrangement, and a pulse manipulator arrangement. The pulse manipulator arrangement comprises a temporal pulse manipulator unit which is accommodated in an optical path of an input pulse of an initial profile, and is configured to affect trajectories of light components of the input pulse impinging thereon so as to direct the light components towards an optical axis of the lens arrangement along different optical paths, said temporal light manipulator unit being accommodated in a front focal plane of the imaging lens arrangement, thereby enabling to restore the input pulse profile at an imaging plane.
Abstract:
A method and system are presented for producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium. The method comprises generation of a unitary optical excitation pulse that carries a pump photon, a Stokes photon and a probe photon; and inducing a CARS process in the medium by exciting the medium by the at least one such unitary optical excitation pulse. Strong coherent non resonant background, a major problem in single-pulse CARS, is reduced by orders of magnitude by using phase-only pulse shaping or completely supressed by using phase-and-polarisation shaped pulses.
Abstract:
A method and device (100A) are provided for automatically generating a key and a conjugate key to be used in an optical code division multiple access system. The method comprises applying a down conversion process to pump input light to thereby produce down converted broadband signal and idler fields (Ls, Li) that are complex conjugates of each other. The signal and idler fields thus serve as the key and its conjugate. Also provided according to the invention is a method for use in coding/decoding a signal in an optical code division multiple access system.
Abstract:
A method and system are presented for producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium. The method comprises generation of a unitary optical excitation pulse that carries a pump photon, a Stokes photon and a probe photon; and inducing a CARS process in the medium by exciting the medium by the at least one such unitary optical excitation pulse. Strong coherent non resonant background, a major problem in single-pulse CARS, is reduced by orders of magnitude by using phase-only pulse shaping or completely supressed by using phase-and-polarisation shaped pulses.
Abstract:
An efficient broadband crystal for wavelength conversion, the crystal being a quasi-phase matched non-linear crystal, having an aperiodic poled structure, each period being tuned, and wherein said tuning varies adiabatically along a length of said crystal from a first end wherein said tuning is a strong negative mismatch to a second end wherein said tuning is a strong positive mismatch or vice versa. The crystal is able to provide efficient wavelength conversion over a range of frequencies.