Abstract:
A thermionic emission device includes an insulating substrate, and one or more grids located thereon. Each grid includes a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. The thermionic electron emitter includes at least one carbon nanotube wire.
Abstract:
An exemplary electron emission device includes an electron emitter, an anode opposite to and spaced apart from the electron emitter, a first power supply circuit, and a second power supply circuit. The first power supply circuit is configured for electrically connecting the electron emitter and the anode with a power supply to generate an electric field between the electron emitter and the anode. The second power supply circuit is configured for electrically connecting the electron emitter with a power supply to supply a heating current for heating the electron emitter whereby electrons emit therefrom. Methods for generating an emission current with a relatively higher stability also are provided.
Abstract:
Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y, and lanthanides La through Lu are used in electrodes. The electron emission materials include ternary Group IVB-IIIB, IVB-IIA, and IIIB-IIA oxides and quaternary Group IVB-IIIB-IIA oxides. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, molybdenum, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.