Abstract:
본 발명은 낮은 밴드갭을 갖는 실로레 유도체 및 이를 광활성층에 포함한 고효율 유기태양전지에 관한 것으로서, 본 발명에 따른 실로레 유도체는 하기 [화학식 ]로 표시되는 화합물인 것을 특징으로 하며, 본 발명에 따른 실로레 유도체 화합물은 광흡수영역이 넓은 낮은 밴드갭을 가지고 있으며, 정공이동도가 우수하고, 적절한 분자 준위를 가지는 화합물로서, 이를 유기태양전지의 광활성층으로 이용시 효율이 우수한 유기태양전지의 구현이 가능하다. [화학식 Ⅰ]
Abstract:
본 발명은 염료감응 태양전지용 염료의 흡착방법, 이를 이용한 광전극 및 염료감응 태양전지에 관한 것으로 산화티타늄 박막의 상면에 금속산화물 나노입자를 포함하는 페이스트를 코팅한 후 소성하여 다공질막을 형성하는 단계, 다공질막을 산성 수용액에 침지시켜 다공질막의 표면을 개질하는 단계 및 표면개질된 다공질막을 유기 용매에 분산된 감광성 염료에 침지시켜 다공질막 표면에 감광성 염료를 흡착시키는 단계를 포함함으로써, 다공질막의 표면이 양전하를 띄므로 염료흡착이 빠르게 진행되고 흡착시간이 단축되어도 장, 단기적으로 염료 탈착이 일어나지 않아 태양전지의 장기 안정성을 보장할 수 있다.
Abstract:
The present invention relates to a dye-adsorption method for dye-sensitized solar cells, and photoelectrode electrodes and dye-sensitized solar cells using the same. The dye-adsorption method includes a step of forming a porous layer by a sintering process after a paste including metallic oxide nanoparticles is coated on the upper surface of a titanium oxide thin film, a step of reforming the surface of the porous layer by dipping the porous layer into an acidic solution, and a step of adsorbing a photosensitive dye to the surface of the porous layer by dipping the reformed porous layer in a photosensitive dye dispersed into an organic solution. Because there are positive charges on the surface of the porous layer, dye desorption is not generated in the short and long term even if the dye adsorption is quickly carried out and the adsorption time is short. Therefore, the long-run stability of solar cells can be obtained. [Reference numerals] (AA) Chitosan-funtionalized-NC (Chito-NC); (BB) Step for reforming the surface of the porous layer; (CC) Step for adsorbing a photosensitive dye to the surface of the porous layer
Abstract:
The present invention relates to an amorphous silicon solar cell that includes an upper/lower electrode and an interfacial electrode applying an electric field between light absorption layers without a doping process. Because a doping process is not carried out, a harmful doping gas is not used. Also, because a window layer for receiving light is used as a metallic oxide which has high light transmission and a function of transferring holes, the loss of light reaching a light absorption layer can be minimized and the photocurrent density improved.
Abstract:
The present invention relates to a tandem solar cell combined with an amorphous silicon solar cell and an organic solar cell. A transparent conducting intermediate layer is formed at an interface between the amorphous silicon solar cell and the organic solar cell. The loss of light absorption due to the introduction of the transparent conducting intermediate layer is minimized and the interface resistance of the inner part of the tandem solar cell is greatly reduced. Thereby, a solar cell of high efficiency can be manufactured. [Reference numerals] (10) Conductive substrate; (20) P-type amorphous silicon; (30) I-type amorphous silicon; (40) N-type amorphous silicon; (50) Transparent conducting intermediate layer; (60) Hole transport layer; (70) Organic photoactive layer; (80) Electron transport layer; (90) Electrode
Abstract:
The present invention relates to a method for fabricating CIS-based compound thin film with a dense and fine structure by using a pressure process without using an organic binder. A CIS-based compound thin film with high efficiency is obtained by manufacturing a high quality thin film through a simple and economical manufacturing process. [Reference numerals] (AA) Manufacture a solution precursor or colloid (slurry) precursor;(BB) Ink or paste coating;(CC) Pressurize (Pressing, first axis pressing, cold isostatic pressing);(DD) Heat treatment;(EE) Manufacture solar batteries
Abstract:
PURPOSE: An environment-friendly polymer gel electrolyte composition facilitates the injection of electrolyte, reduces leakage and volatilization, thereby providing a dye-sensitized solar cell with excellent long term stability and high efficiency. CONSTITUTION: A polymer gel electrolyte composition for a dye-sensitized solar cell comprises a polysaccharide-based polymer aqueous solution and a liquid electrolyte mixed of an oxidation-reduction derivative and an organic solvent. A manufacturing method of a polymer gel electrolyte composition comprises a step of manufacturing a polymer gel aqueous solution by dispersing polysaccharide-based polymer into a solvent; a step of manufacturing a liquid electrolyte by mixing an oxidation-reduction derivative and an organic solvent; and a step of mixing the polysaccharide-based polymer gel aqueous solution and liquid electrolyte.
Abstract:
PURPOSE: A donor-bridge-acceptor type organic semiconductor for a solar cell is provided to optimize a bridge structure and to enhance efficiency of the solar cell. CONSTITUTION: A donor-bridge-acceptor type organic semiconductor for a solar cell is denoted by chemical formula 1. In chemical formula 1, R1 and R2 are independently selected from hydrogen and C1-C20 saturated or unsaturated alkyl group of a straight chain or a branched chain. The organic semiconductor of chemical formula 1 is prepared according to reaction formula 1.
Abstract:
PURPOSE: A laminated polymer solar battery using a metal oxide nano particle and a manufacturing method thereof are provided to form a middle layer and form a second light activating layer and a drain electrode on the middle layer, thereby obtaining a high open circuit voltage. CONSTITUTION: A first photoactive layer(30), a middle layer(40), a recombination layer, a second photoactive layer(60), and a drain electrode are successively laminated from the lower part of a conductive substrate from the top of the conductive substrate. The middle layer protects the first and second photoactive layers and assists electron transfer from the first photoactive layer to the recombination layer. The middle layer has surface roughness which is shorter than 50nm. The middle layer comprises a high dispersion metal oxide nano particle. An electron transferred to the first photoactive layer and a hole transferred to the second photoactive layer.