Abstract:
The present disclosure relates to a backward compatibility converter including a converter housing having a first end positioned opposite from a first second end. The first end of the converter housing includes an end wall defining a first opening. The second end of the converter housing defines a second opening. The converter housing defines an internal passage that extends through the converter housing from the first opening to the second opening. The first end of the converter housing includes two paddles that project outwardly from the end wall. The paddles are positioned at opposite sides of the first opening and include inner surfaces that oppose each other. The converter housing defines internal threads located within the internal passage. The backward compatibility converter also includes a coupling nut rotatably mounted about an exterior of the converter housing adjacent the second end of the converter housing. The backward compatibility converter further includes a sealing member mounted about the exterior of the converter housing at al location between the coupling nut and the first end of the converter housing.
Abstract:
A loop back connector and methods for testing lines in a fiber optic network are disclosed. The loop back connector includes a ferrule having an interface side constructed for optical connection to a multifiber optical cable. The loop back connector also includes first and second optical loop back paths, each having first and second terminal ends positioned at the interface side. The terminal ends of each loop back path are adapted to be aligned to fibers in the multifiber optical cable. The method includes injecting a signal on a first optical path at a first location, looping back the signal at a second location onto a second optical path, and receiving the signal on the second optical path at the first location.
Abstract:
Se divulga un conector de fibra optica para uso tanto con un adaptador de fibra optica robustecido como con un adaptador de fibra optica no robustecido: El conector incluye un alojamiento de conector con un extremo que define una porcion de enchufe. La porcion de enchufe incluye un primer conjunto y un segundo conjunto de prestaciones de retencion para retener el conector. El primer conjunto y el segundo conjunto de prestaciones de retencion retienen el conector dentro del adaptador robustecido y el adaptador no robustecido, respectivamente. Puede incluirse un miembro roscado sobre el conector para sujetar y conectar a rosca el conector al adaptador robustecido. Puede incluirse una traba deslizable sobre el conector para trabar el conector al adaptador lo robustecido cuando se desliza a una posicion de traba. La traba deslizable puede ser montada en el miembro roscado. La traba deslizable puede incluir salientes que sujetan y traban el adaptador no robustecido en la posicion de traba, trabando así el adaptador no robustecido al conector. La traba deslizable puede incluir un enganche de posicionamiento para mantenerla en la posicion de traba. El enganche de posicionamiento puede mantener la posicion de traba sujetando el primer conjunto de prestaciones de retencion sobre la porcion de enchufe.
Abstract:
Conector de fibra óptica reforzado compatible con uno no reforzado, donde ambos incluyen un enclavamiento de retención, además comprende una férula alineada en el eje longitudinal, una cubierta con un tapón con interfaz para el adaptador no reforzado con una estructura de agarre para el enclavamiento y un elemento de retención reforzado.
Abstract:
La presente descripción se refiere a un adaptador de fibra óptica para utilizarse con conectores de fibra óptica. El adaptador de fibra óptica incluye un alojamiento que tiene una primera porción de extremo axial que define un primer puerto de adaptador y una segunda porción de extremo axial que define un segundo puerto de adaptador. El adaptador de fibra óptica incluye además un primer mecanismo de retención que se asocia de manera operable con la primera porción de extremo axial para retener el primer conector de fibra óptica en el primer puerto de adaptador del adaptador de fibra óptica y un segundo mecanismo de retención que se asocia de manera operable con la primera porción de extremo axial para retener el primer conector de fibra óptica en el primer puerto de adaptador del adaptador de fibra óptica.
Abstract:
A loop back connector and methods for testing lines in a fiber optic network are disclosed. The loop back connector includes a ferrule having an interface side constructed for optical connection to a multifiber optical cable. The loop back connector also includes first and second optical loop back paths, each having first and second terminal ends positioned at the interface side. The terminal ends of each loop back path are adapted to be aligned to fibers in the multifiber optical cable. The method includes injecting a signal on a first optical path at a first location, looping back the signal at a second location onto a second optical path, and receiving the signal on the second optical path at the first location.
Abstract:
A method for processing ferrules for fiber optic connectors is disclosed herein. The method involves ablating a distal end face of the ferrule with the plurality of laser beam pulses to remove a distal layer of the ferrule without removing an optical fiber secured within the ferrule. By removing the distal layer from the ferrule, the optical fiber is caused to protrude distally outwardly from the distal end of the ferrule by a desired amount. A final polish is applied to the distal end face of the ferrule. In some examples, a subsequent laser step is used to remove portions of the distal end face of the ferrule.
Abstract:
A fiber optic cable and connector assembly is disclosed. In one aspect, the assembly includes a cable optical fiber, an optical fiber stub and a beam expanding fiber segment optically coupled between the cable optical fiber and the optical fiber stub. The optical fiber stub has a constant mode field diameter along its length and has a larger mode field diameter than the cable optical fiber. In another aspect, a fiber optic cable and connector assembly includes a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including an expanded beam fiber segment supported within the ferrule. The expanded beam fiber segment can be constructed such that the expanded beam fiber segment is polished first and then cleaved to an exact pitch length. The expanded beam fiber segment can be fusion spliced to a single mode optical fiber at a splice location behind the ferrule.
Abstract:
A fiber optic connector and fiber optic cable assembly is disclosed. The assembly includes a fiber optic cable having a plurality of optical fibers. The assembly also includes a connector body, a multi-fiber ferrule and a protective housing. The fiber optic cable is anchored to a proximal end of the connector body and the multi-fiber ferrule is mounted at a distal end of the connector body. The multi-fiber ferrule supports end portions of optical fibers of the optical fiber cable. The protective housing mounts over the connector body. A dimensionally recoverable sleeve prevents contaminants from entering the protective housing through a proximal end of the protective housing. A dust cap and sealing member prevent contaminants from entering the protective housing through a distal end of the protective housing.
Abstract:
A self-centering structure (300) for aligning optical fibers (308) desired to be optically coupled together is disclosed. The self-centering structure (300) including a body (310) having a first end (312) and a second end (314). The first end (312) defines a first opening (303) and the second end (314) defines a second opening (304). The self-centering structure (300) includes a plurality of groove structures (306) integrally formed in the body (310) of the self-centering structure for receiving the optical fibers (308) and a fiber alignment region (305) positioned at an intermediate location between the first and second ends (312, 314) to facilitate centering and alignment of the optical fibers (308). The self-centering structure (300) further includes a plurality of cantilever members (322) arranged and configured on opposing sides of the fiber alignment region (305). Each of the plurality of cantilever members (322) are aligned with a respective one of the plurality of groove structures (306). The plurality of cantilever members (322) include a first plurality of cantilever members (322a) adjacent the first end (312) of the self-centering structure (300) and a second plurality of cantilever members (322b) adjacent the second end (314) of the self-centering structure (300). The plurality of cantilever members (322) is flexible and configured for urging the optical fibers (308) into their respective groove structures (306).