Abstract:
H:\tld\Intrwovn\NRPortbl\DCC\TLD\6254653_I.doc-28/04/2014 A fiber optic connector is disclosed for use with both a hardened fiber optic adapter and a non-hardened fiber optic adapter. The connector includes a connector housing having an 5 end defining a plug portion. The plug portion includes first and second sets of retaining features for retaining the connector. The first and second retaining feature sets retain the connector within the hardened and unhardened adapters respectively. A threaded member can be included on the connector to threadingly engage and connect the connector to the hardened adapter. A sliding lock can be included on the connector to lock the connector to 10 the non-hardened adapter when slid into a locking position. The sliding lock can be mounted to the threaded member. The sliding lock can include protrusions that engage and lock the non-hardened adapter when in the locking position thereby locking the non hardened adapter to the connector. The sliding lock can include a positioning latch to maintain it in the locking position. The positioning latch can maintain the locking position 15 by engaging the first set of retaining features on the plug portion.
Abstract:
A fiber distribution terminal system includes a below ground vault, and a terminal enclosure within the vault. The system also includes a lift system in the vault, the lift system including a screw drive and a track system. Rotation of the screw drive lifts the terminal enclosure from a below ground to a lifted position, and the track system guides the terminal enclosure as the enclosure is lifted. The system also includes a tool such as a cordless drill to drive the screw drive. The screw drive can include a ball screw and a ball nut. The system can include a bracket to couple the terminal enclosure to the screw drive and the track system. The track system can include two sets of tracks, a first set of tracks that is fixed in the vault, and a second set of tracks that is coupled to the first set of tracks.
Abstract:
A fiber distribution system includes one or more fiber distribution hubs (FDHs) that provide an interface at a termination panel between incoming fibers routed from a central office and outgoing fibers routed to network subscribers. Termination modules can be incrementally added to the termination panel. The FDH can include one or more optical splitter modules that split an optical signal into two or more signals. The optical splitter modules can be incrementally added along with one or more storage modules. The subscriber termination panel, optical splitters, and storage modules can be provided on a swing frame.
Abstract:
The invention relates to a fiber optic connector and cable assembly comprising:a fiber optic cable including an optical fiber, a jacket surrounding the optical fiber, and at least one strength member for providing the fiber optic cable with axial reinforcement;a connector housing including a first end positioned opposite from a second end, the first end defining a plug portion adapted for insertion in a fiber optic adapter and the second end receiving the at least one strength member and the optical fiber of the fiber optic cable;a ferrule positioned at the first end of the connector housing, the ferrule receiving an end portion of the optical fiber, the ferrule defining an axis that extends through the connector housing from the first end to the second end of the connector housing;a spring for biasing the ferrule in a direction that extends outwardly from the first end of the connector housing along the axis of the ferrule; andan insert that mounts within the connector housing, the insert including a first portion that forms a spring stop for retaining the spring within the plug portion of the connector housing, the insert also including a cable retention portion to which the at least one strength member of the fiber optic cable is secured.
Abstract:
The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
Abstract:
A fiber distribution terminal system includes a below ground vault, and a terminal enclosure within the vault. The system also includes a lift system in the vault, the lift system including a screw drive and a track system. Rotation of the screw drive lifts the terminal enclosure from a below ground to a lifted position, and the track system guides the terminal enclosure as the enclosure is lifted. The system also includes a tool such as a cordless drill to drive the screw drive. The screw drive can include a ball screw and a ball nut. The system can include a bracket to couple the terminal enclosure to the screw drive and the track system. The track system can include two sets of tracks, a first set of tracks that is fixed in the vault, and a second set of tracks that is coupled to the first set of tracks.
Abstract:
The present disclosure relates to a telecommunications distribution cabinet having a cabinet housing in which a first swing frame and a second swing frame are pivotably mounted.
Abstract:
A fiber distribution system includes one or more fiber distribution hubs (FDHs) that provide an interface at a termination panel between incoming fibers routed from a central office and outgoing fibers routed to network subscribers. Termination modules can be incrementally added to the termination panel. The FDH can include one or more optical splitter modules that split an optical signal into two or more signals. The optical splitter modules can be incrementally added along with one or more storage modules. The subscriber termination panel, optical splitters, and storage modules can be provided on a swing frame.
Abstract:
The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
Abstract:
A fiber distribution system includes one or more fiber distribution hubs (FDHs) that provide an interface at a termination panel between incoming fibers routed from a central office and outgoing fibers routed to network subscribers. Termination modules can be incrementally added to the termination panel. The FDH can include one or more optical splitter modules that split an optical signal into two or more signals. The optical splitter modules can be incrementally added along with one or more storage modules. The subscriber termination panel, optical splitters, and storage modules can be provided on a swing frame.