Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
A technique to retain cached information during a low power mode, according to at least one embodiment. In one embodiment, information stored in a processor's local cache is saved to a shared cache before the processor is placed into a low power mode, such that other processors may access information from the shared cache instead of causing the low power mode processor to return from the low power mode to service an access to its local cache.
Abstract:
Apparatuses including a graphics processing unit, graphics multiprocessor, or graphics processor having an error detection correction logic for cache memory or shared memory are disclosed. In one embodiment, a graphics multiprocessor includes cache or local memory for storing data and error detection correction circuitry integrated with or coupled to the cache or local memory. The error detection correction circuitry is configured to perform a tag read for data of the cache or local memory to check error detection correction information.
Abstract:
One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
Abstract:
Embodiments described herein provide techniques to disaggregate an architecture of a system on a chip integrated circuit into multiple distinct chiplets that can be packaged onto a common chassis. In one embodiment, a graphics processing unit or parallel processor is composed from diverse silicon chiplets that are separately manufactured. A chiplet is an at least partially and distinctly packaged integrated circuit that includes distinct units of logic that can be assembled with other chiplets into a larger package. A diverse set of chiplets with different IP core logic can be assembled into a single device.
Abstract:
One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
Abstract:
Embodiments described herein provide techniques to disaggregate an architecture of a system on a chip integrated circuit into multiple distinct chiplets that can be packaged onto a common chassis. In one embodiment, a graphics processing unit or parallel processor is composed from diverse silicon chiplets that are separately manufactured. A chiplet is an at least partially and distinctly packaged integrated circuit that includes distinct units of logic that can be assembled with other chiplets into a larger package. A diverse set of chiplets with different IP core logic can be assembled into a single device.
Abstract:
Embodiments described herein provide techniques to disaggregate an architecture of a system on a chip integrated circuit into multiple distinct chiplets that can be packaged onto a common chassis. In one embodiment, a graphics processing unit or parallel processor is composed from diverse silicon chiplets that are separately manufactured. A chiplet is an at least partially and distinctly packaged integrated circuit that includes distinct units of logic that can be assembled with other chiplets into a larger package. A diverse set of chiplets with different IP core logic can be assembled into a single device.
Abstract:
A mechanism is described for facilitating storage management for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting one or more components associated with machine learning, where the one or more components include memory and a processor coupled to the memory, and where the processor includes a graphics processor. The method may further include allocating a storage portion of the memory and a hardware portion of the processor to a machine learning training set, where the storage and hardware portions are precise for implementation and processing of the training set.
Abstract:
A mechanism is described for facilitating inference coordination and processing utilization for machine learning. A method of embodiments, as described herein, includes limiting execution of workloads for the respective contexts of a plurality of contexts to a specified subset of a plurality of processing resources of a processing system according to physical resource slices of the processing system that are associated with the respective contexts of the plurality of contexts.