Abstract:
Methods and apparatus to cooperatively lift a payload (110) are disclosed. An example method to control a lift vehicle (102) includes determining (704) a first positional state of the lift vehicle (102) with respect to a payload (110) controlled by a plurality of lift vehicles (102, 104, ...) including the lift vehicle (102), determining (706) a second positional state of the lift vehicle (102) with respect to a goal location, detecting distances (708) to the other ones of the plurality of lift vehicles (102, 104, ...), determining (710) a third positional state of the lift vehicle (102) based on the distances to the other ones of the plurality of lift vehicles (102, 104, ...), and calculating (712-720) a control command to control the lift vehicle (102) based on the first positional state, the second positional state, and the third positional state.
Abstract:
The invention relates to a process (PCR) for signaling an accident by means of at least one drone, said process (PRC) involving the following steps: - acquiring a location (1001) of the place of the accident; - calculating the coordinates of at least one signaling position (1002); - signaling the accident (1003) in accordance with a combination of the location of the place of the accident (1001) and the calculated coordinates of the at least one position (1002).
Abstract:
Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
Abstract:
A method for operating a mobile platform includes detecting a malfunction in a first sensor communicating with a sensor controller associated with the mobile platform, and switching to a second sensor communicating with the sensor controller based upon the detecting.
Abstract:
Systems and methods for controlling an unmanned aerial vehicle within an environment are provided. In one aspect, a system comprises one or more sensors carried by the unmanned aerial vehicle and configured to provide sensor data and one or more processors. The one or more processors can be individually or collectively configured to: determine, based on the sensor data, an environment type for the environment; select a flight mode from a plurality of different flight modes based on the environment type, wherein each of the plurality of different flight mode is associated with a different set of operating rules for the unmanned aerial vehicle; and cause the unmanned aerial vehicle to operate within the environment while conforming to the set of operating rules of the selected flight mode.
Abstract:
Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
Abstract:
This invention relates to an Unmanned Aerial Vehicle hereinafter called “Mother UAV” member (11) capable of carrying modules of Sub Unmanned Aerial Vehicle members (12) hereinafter called “Sub UAV” member. More particularly, the method and system that is capable of communicating via satellite and remote control technology wherein ejecting said Sub UAV members (12) from the Mother UAV member (11) wherein Sub UAV members (12) autonomously fly in sequence in a coordinated manner with the Mother UAV member (11), and capable of engaging in multiple missions in high, medium, low altitude, and surface, also communication with under sea submarines (27). Further, comprises of a method and system that the Sub UAV members (12) are able to return back to the Mother UAV member (11) after the mission is completed and be firmly secured to the flatbed (14) of the Mother UAV member (11). The present invention is specifically designed for multifunctional and multipurpose applications where humans and other vehicles are unable to access, for civil, commercial and military purposes.
Abstract:
Systems and methods for controlling an unmanned aerial vehicle within an environment are provided. In one aspect, a system comprises one or more sensors carried by the unmanned aerial vehicle and configured to provide sensor data and one or more processors. The one or more processors can be individually or collectively configured to: determine, based on the sensor data, an environment type for the environment; select a flight mode from a plurality of different flight modes based on the environment type, wherein each of the plurality of different flight mode is associated with a different set of operating rules for the unmanned aerial vehicle; and cause the unmanned aerial vehicle to operate within the environment while conforming to the set of operating rules of the selected flight mode.