Abstract:
MEMS Device having Electrothermal Actuation and Release and Method for Fabricating. According to one embodiment, a microscale switch is provided and can include a substrate and a stationary electrode and stationary contact formed on the substrate. The switch can further include a movable microcomponent suspended above the substrate. The microcomponent can include a structural layer including at least one end fixed with respect to the substrate. The microcomponent can further include a movable electrode spaced from the stationary electrode and a movable contact spaced from the stationary electrode. The microcomponent can include an electrothermal component attached to the structural layer and operable to produce heating for generating force for moving the structural layer.
Abstract:
One aspect is a method for the production of a three-dimensional structure of successive layers producing a multitude of successive layers wherein, with the exception of a first layer, each of the successive layers is arranged on a preceding layer. Each of the successive layers includes at least two materials wherein one material is a sacrificial material and one material is a structure material. Each of the successive layers defines a successive cross-section through the three-dimensional structure. Producing each of the layers includes depositing the sacrificial material by means of an electrochemical process and depositing the structure material by means of physical gas phase deposition. After a multitude of successive layers has been produced, the three-dimensional structure is uncovered by removing at least a part of the sacrificial material. The sacrificial material is at least one of a group consisting of nickel, silver, palladium, and gold.
Abstract:
In accordance with the present invention, accurate and easily controlled sloped walls may be formed using AlN and preferably a heated TMAH for such purpose as the fabrication of MEMS devices, wafer level packaging and fabrication of fluidic devices. Various embodiments are disclosed.
Abstract:
Methods of fabricating an electromechanical systems device that mitigate permanent adhesion, or stiction, of the moveable components of the device are provided. The methods provide an amorphous silicon sacrificial layer with improved and reproducible surface roughness. The amorphous silicon sacrificial layers further exhibit excellent adhesion to common materials used in electromechanical systems devices.
Abstract:
Methods of fabricating an electromechanical systems device that mitigate permanent adhesion, or stiction, of the moveable components of the device are provided. The methods provide an amorphous silicon sacrificial layer with improved and reproducible surface roughness. The amorphous silicon sacrificial layers further exhibit excellent adhesion to common materials used in electromechanical systems devices.
Abstract:
A method for fabricating a microstructure is to form at least one insulation layer including a micro-electro-mechanical structure therein over an upper surface of a silicon substrate. The micro-electro-mechanical structure includes at least one microstructure and a metal sacrificial structure that are independent with each other. In the metal sacrificial structure are formed a plurality of metal layers and a plurality of metal via layers connected to the respective metal layers. A barrier layer is formed over an upper surface of the insulation layer, and an etching stop layer is subsequently formed over a lower surface of the silicon substrate. An etching operation is carried out from the lower surface of the silicon substrate to form a space corresponding to the micro-electro-mechanical structure, and then the metal sacrificial structure is etched, thus achieving a microstructure suspension.
Abstract:
A method for protecting a material of a microstructure comprising the material and a noble metal layer against undesired galvanic etching during manufacture, the method comprises forming on the structure a sacrificial metal layer having a lower redox potential than the material, the sacrificial metal layer being electrically connected to the noble metal layer.
Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer having a lower redox potential than said material, the sacrificial metal layer being electrically connected to said noble metal layer.
Abstract:
Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
Abstract:
A method of through-etching a substrate that is simplified and by which the flow of ions can be kept to be regular during a plasma dry etching process, is provided. According to this method, a buffer layer is formed on a first plane of the substrate, a metal layer is formed on the buffer layer, an etching mask pattern is formed on a second plane opposite to the first plane, and the substrate is through-etched with the etching mask pattern as an etching mask. Preferably, the substrate is formed of a single-crystal silicon, the buffer layer is formed of silicon dioxide, and the metal layer is formed of aluminum.