Abstract:
A stamper-forming electrode material contains Cu as its main ingredient and at least one other element, preferably Ag and/or Ti. It is preferred that the Ag content be 10.0 wt % or less and that the Ti content be 5.0 wt % or less. A stamper-forming thin film is made of this stamper-forming electrode material, whereby its corrosion resistance is improved to suppress damage to itself, and a high-quality stamper can hence be formed.
Abstract:
This invention relates to the area of microelectromechanical systems in which electronic circuits and mechanical devices are integrated on the same silicon chip. The method taught herein allows the fabrication of thin film structures in excess of 150 microns in height using thin film deposition processes. Wafers may be employed as reusable molds for efficient production of such structures.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
PROBLEM TO BE SOLVED: To provide a process for fabricating a monolayer or multilayer metal structure in LIGA technology.SOLUTION: In the process, a photoresist layer is deposited on a flat metal substrate; a photoresist mold is created by irradiation or electron bombardment or ion bombardment; a metal or alloy is electroplated in this mold; the electroformed metal structure is detached from the substrate; and the photoresist is separated from this metal structure. In the process, the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than a surface formed by the plane surface of the substrate.
Abstract:
The invention is related to a micro handling device for handling micro objects and for measuring forces exerted on said micro objects, including a micro gripper and a force sensor connected to said micro gripper, In order to provide such handling device which is rather simple and rugged in construction, less expensive than other typical devices used for such purpose and still useful and easily adaptable in measuring linear forces in the range of 10 µN to 1000 mN under relative displacements up to 1 mm or more, the device being applicable to a wide area of materials and components having micro-scale dimensions the present invention proposes that the device comprises a micro spring as the force sensor.
Abstract:
Procédé (Pr1) de fabrication d'une pièce (PC), comportant les étapes suivantes : - Superposer (Pr1_sup) une couche électriquement isolante (CL) comportant un premier orifice (OL1), une couche supplémentaire (CS) comportant une première ouverture (OS1), une couche intermédiaire (CT) comprenant un premier trou (OT1), et une couche de base (CB) surmontée d'un motif de base (MB1) - Déposer (Pr1_gal) une couche métallique, de sorte qu'à l'issue de cette étape, la couche métallique forme une coque recouvrant des parois électriquement conductrices du motif de base (MB1), du premier orifice (OL1), de la première ouverture (OS1) et du premier trou (OT1), et comporte une zone latérale (EL) reposant sur la couche isolante (CL) - Dissoudre la couche isolante (CL) - Recouvrir (Pr1_rec) la couche métallique ou d'alliage (CM) d'un volume (VL) constitué par un matériau de base de la pièce (PC), de sorte que le volume (VL) épouse les formes de la couche métallique (CM).