Abstract:
Embodiments of the invention relate to a hydrogen-resistant optical fiber with a core having a central axis. The core may include only silica, or only silica and fluorine, while a cladding region surrounding the core may be made of silica and fluorine, along with at least one of germanium, phosphorus, and titanium.
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
Abstract:
A method and apparatus for making a substantially void-free preform for a microstructured optical fiber using a one-step process is provided. A preform is prepared from specialty glasses using a direct extrusion method. A die for use with the direct extrusion method is also provided, and a method for drawing the preform into a HC-PBG fiber for use in transmitting infra-red wavelength light is also provided. The preform comprises an outer jacket made of solid glass, a cladding having a plurality of air holes arranged in a desired pattern within the jacket, and a core which is hollow.
Abstract:
A process for producing a high-quality glass from highly reactive raw materials and a glass-melting apparatus for use therewith, comprising the step of charging a material for the glass to a molten glass in a heated vessel, (1) wherein an oxidizing gas is bubbled in the molten glass and a glass raw material that behaves as a reducing agent during being melted is charged into a position of the bubbling or (2) said vessel is filled with a dry ambient gas and while the ambient gas is allowed to flow to a liquid surface of the molten glass along an charging route of the glass raw material, the glass raw material is charged.
Abstract:
An optical fiber having a length can include a core and at least one cladding disposed about the core, where the one cladding can comprise at least first volumetric regions having a first refractive index n1 and second volumetric regions having a second refractive index n2, different from n1, and the first and second volumetric regions in any cross-section taken through the fiber can be randomly intermingled with one another, where the random intermingling of the first and second volumetric regions changes with changes in the location of the cross-section along the length of the fiber.
Abstract:
An optical fiber amplifier module is disclosed which comprises a signal path located between a signal input and a signal output. A WDM coupler and an amplifying gain medium are disposed along the signal path. A pump laser is disposed out of the signal path in a manner that allows a pump signal from the pump laser to reflect off the WDM coupler and enter the signal path. An embodiment utilizing a second WDM coupler and a second pump laser is also disclosed.
Abstract:
A cylindrical silver-activated phosphate glass base material 2 is placed inside a heater 1. The upper end of this base material 2 is set in a supporting section 3, and an extending section 4 provided in vertically movable fashion by means of a drive device is attached to the lower end thereof. As the base material 2 is softened by the heating of the heater 1, and the extending section 4 is lowered by operating the drive device, the base material 2 is extended and assumes a thin bar shape. The extension rate of the extending section 4 driven by the drive device is controlled by an external diameter control section 5, while detecting the external diameter, in such a manner that the external diameter of the extended portion is uniform. The extended portion 6 of the base material 2 is cut to uniform lengths, and the cut faces thereof are polished by a polishing device, thereby yielding a cylindrical dosimeter glass element 7a.
Abstract:
An optical fiber amplifier module is disclosed which comprises a signal path located between a signal input and a signal output. A WDM coupler and an amplifying gain medium are disposed along the signal path. A pump laser is disposed out of the signal path in a manner that allows a pump signal from the pump laser to reflect off the WDM coupler and enter the signal path. An embodiment utilizing a second WDM coupler and a second pump laser is also disclosed.
Abstract:
The present invention relates generally to a novel and unique class of gly materials and methods of making such materials in which substantially all of the anions are nitride ions, in contrast to the oxide ions of conventional optical glasses, or the fluoride ions of the more recently discovered fluoride optical glasses. The chemical nature of these new glasses dispose the glassy materials to a remarkable combination of desirable properties, including, but not limited to, high hardness, high refractive index and high softening temperature.
Abstract:
The present invention relates generally to a novel and unique class of gly materials and methods of making such materials in which substantially all of the anions are nitride ions, in contrast to the oxide ions of conventional optical glasses, or the fluoride ions of the more recently discovered fluoride optical glasses. The chemical nature of these new glasses dispose the glassy materials to a remarkable combination of desirable properties, including, but not limited to, high hardness, high refractive index and high softening temperature.