Abstract:
The invention relates to plastic metal working, more specifically to methods for producing parts of the disk- or shell-type having conical, hemispherical, and also combined parts, such as disk-and-shaft ones. The invention is instrumental in producing large axially symmetric parts from hard-to-work multiphase alloys. The method consists in that the billet is heated in a temperature range above 0.4 m.p. but below the temperature at which a total content of precipitates or an allotropic modification of the matrix of a multiphase alloy is not below 7 %. Then the preheated billet is rolled, while controlling its temperature and the tool load, as well as the rolling speed. Once rolled the billet is heat-treated at a temperature depending on the microstructure of the billet material resulting from rolling. Prerolling preparing of a specified microstructure of the billet material is also described.
Abstract:
A method of bonding a titanium article to another metal article using a superplastic interlayer is disclosed. A fine-grain titanium alloy interlayer is provided between faying surfaces of the articles to be bonded. The interlayer has an alpha-beta microstructure and an average grain size of less than about 1-3 microns (.001-.003 mm) in at least one plane. The articles to joined and the interlayer are heated to between 1000 °F (538 °C) and 1500 °F (816 °C). A sufficiently large compressive force is then applied to the articles to cause superplastic deformation of the interlayer and bonding of the articles.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung des superplastischen Gefüges von Halbzeugen aus UHC-Leichtbaustählen der Legierungszusammensetzung C von 0,8 bis 1,6 Gew.%, A1 von 5 bis 10 Gew.%, Cr von 0,5 bis 3 Gew.%, Si von 0,01 bis 2,8 Gew.% und Rest Eisen sowie übliche stahlbegleitende Verunreinigungen, mit den Schritten a) Erwärmung des Stahls auf eine Homogenisierungstemperatur die in einem Bereich von bis zu 200 °C oberhalb der Austenitisierungstemperatur (A cm ) liegt b) Heißumformung mit einem Umformgrad >1, 2 unter stetiger Abkühlung auf eine Temperatur, die im Bereich bis zu 200 °C unterhalb A 1 (A 1 -Temperatur) liegt, c) Warmumformung bei einer Temperatur in einem oberen Temperaturband von A1 bis A 1 + 200 °C und d) langsame Abkühlung mit einer Abkühlrate unterhalb 20 °C/min auf eine Temperatur unterhalb A 1 , wobei die Warmumformung quasi-isotherm erfolgt, einen Umformgrad > 0,5 und Verweilzeit des Stahls bei der Warmumformtemperatur unterhalb 2 min liegt.
Abstract:
The invention relates to foundry engineering, more specifically to producing a plain bearing antifriction layer by babbiting a bearing pad or base and can be used for producing or repairing plain bearings. The aim of said invention is to improve quality on the a plain bearing antifriction layer. The inventive method for producing the plain bearing antifriction layer consists in babbiting the bearing pad or base and in forcedly cooling at a rate which guarantees the structural uniformity of the thus obtained antifriction layer, mainly by cooling on the cast-in layer side. Said method differs from a known one by that the babbiting of the bearing pad or base makes it possible to obtain a semifinished material of said antifriction layer which is exposed to a plastic deformation by means of a punch under superplasticity conditions in such a way that an antifriction layer is produced, therein the bearing pad or base is used in the form of a matrix.
Abstract:
The invention relates to a method for producing magnesium alloys with a superplastic structure using a deformation process, followed by quick cooling. The magnesium-based alloy is initially pre-heated to a temperature of 340 -380° C and is subsequently deformed. The semi-finished product thus obtained is cooled down at high speed to an ambient temperature immediately after deformation.
Abstract:
The invention relates to a method for producing magnesium alloys with a superplastic structure using a deformation process, followed by quick cooling. The magnesium-based alloy is initially pre-heated to a temperature of 340 -380 DEG C and is subsequently deformed. The semi-finished product thus obtained is cooled down at high speed to an ambient temperature immediately after deformation.