Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
A wire rope (1) includes metallic reinforcing members (4) of substantially triangular cross section, each having an apex located between adjacent strands (3) and continuously aligned with them. The member (4) may be a triangular wire, a triangular plaited arrangement of wires, or a triangular strand, for example.
Abstract:
A flexible intravascular guidewire comprises a plurality of filaments braided together and drawn through a die to a reduced cross-sectional area of circular shape. Preferably, one or more of the filaments is coated with a radiopaque material prior to drawing it through the die. According to a preferred embodiment, each of the filaments is made from the same metallic material; alternatively, the filament material may differ, e.g., to provide flexibility and torsional stiffness characteristics which are unachievable in a metal monofilament, or in a multifilament wire of the same filament materials.
Abstract:
A hybrid rope constructed of a plurality of strands, wherein each strand is constructed of a fiber center, a jacket surrounding the fiber center, and a plurality of wires surrounding the jacket. The fiber center can be constructed of one or more high-strength synthetic fibers or yarns. The jacket can be constructed of polypropylene, thermoplastic polyurethane, high-density polyethylene, linear low-density polyethylene, nylon or other similar materials. The jacket can have a braided or woven design and adds a protective layer between the fiber center and the wires. The wires can be constructed of high-strength steel wires, galvanized steel or stainless steel. The fibers or yarns that make of the fiber center are twisted to lay right and then covered with the jacket. The wires then surround the jacket and are twisted to lay to the left. This creates a torque-balanced condition of the hybrid rope.
Abstract:
A hybrid rope constructed of a plurality of strands, wherein each strand is constructed of a fiber center, a jacket surrounding the fiber center, and a plurality of wires surrounding the jacket. The fiber center can be constructed of one or more high-strength synthetic fibers or yarns. The jacket can be constructed of polypropylene, thermoplastic polyurethane, high- density polyethylene, linear low-density polyethylene, nylon or other similar materials. The jacket can have a braided or woven design and adds a protective layer between the fiber center and the wires. The wires can be constructed of high-strength steel wires, galvanized steel or stainless steel. The fibers or yarns that make of the fiber center are twisted to lay right and then covered with the jacket. The wires then surround the jacket and are twisted to lay to the left. This creates a torque-balanced condition of the hybrid rope.
Abstract:
A multi-layer twisted strand or cable (1) comprising one central elongate element (11) surrounded by three layers of elongate elements, namely an inner layer, a middle layer and an outer layer. Said elongate elements are wires or strands of twisted wires. The surround elongate elements have several different sizes of area of transversal cross section thereof. The middle layer comprises elongate elements (12,14) of different size of area within the middle layer and the sizes of area of the elongate elements between the layers are different. The outer surround elongate elements (15) having the largest size of area. The outer surround elongate elements have a smoothened outer surface (152), so that the twisted strand or cable (1) has a smooth and satiny outer surface (152). All surround elongate elements (13,12,14,15) having the same lay direction and the same pitch. Elongation when stretch force is exerted on the twisted strand or cable and friction and abrasion caused by pulling the twisted strand or cable is reduced.