Abstract:
A swash plate type compressor having a cylinder block with cylinder bores disposed parallel to the axis of the cylinder block. A rotary shaft rotatably mounted within the cylinder block carries an aluminum swash plate. The swash plate is fixed in the rotary shaft and has two facial surfaces and an end surface. The swash plate has a coating preferably between 0.8 to 2.5 microns, of a tin/cobalt coating of at least 0.2 wt% cobalt and the balance being tin. A piston reciprocally fitted within the cylinder bore contains shoes which slideably intervene between the piston and the swash plate facial surfaces and reciprocate the piston and the swash plate facial surfaces and reciprocate the pistons by rotation of the swash plate. The coating on the swash plate permits the use of low silicon alloy aluminum without the need of metal plating or high finish polishing.
Abstract:
A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.
Abstract:
A piston and method of construction are provided. The piston includes a piston body having an upper combustion surface configured for direct exposure to combustion gases within a cylinder bore with an undercrown surface located beneath the upper combustion surface. The piston body also includes a ring belt region configured for receipt of at least one piston ring adjacent the upper combustion surface with a cooling gallery configured radially inwardly and in substantial radial alignment with the ring belt region. The piston further includes a non-stick material contained in or bonded to at least one of the undercrown surface and at least a portion of the cooling gallery, wherein the non-stick material inhibits the buildup of carbon deposits thereon.
Abstract:
Heat shield element (HS) for a gas turbine (GT) comprising an areal wall section (WS), said wall section (WS) being defined by limiting edges of the heat shield element (HS), and having a defined thickness (TH) extending radially from an inner surface (IS) to an outer surface (OS) said inner surface (IS) is exposed to a hot gas path (HGP) and said outer surface (OS) is exposed to a coolant (CO). To improve cooling efficiency, cooling channels (CC) are provided through the wall of said wall section (WS) said cooling channels (CC) comprising a first section (SI) starting at the inner surface (IS), further comprising a second section (S2) extending between the inner surface (IS) and the outer surface (OS) along a length of at least three times the thickness (TH) of the wall section (WS) at that specific area of the second section and comprising a third section (S3) joining the hot gas path so that said cooling channels (CC) connect said cavity (CV) with the hot gas path (HGP).
Abstract:
Known protective coatings having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. The protective coating according to the invention has the composition of 24% to 26% cobalt (Co), 10% to 12% aluminum (Al), 0.2% to 0.5% yttrium (Y), 12% to 14% chromium (Cr), and the remainder nickel.
Abstract:
Es wird ein germaniumhaltiges nickelbasiertes Lot vorgeschlagen, das eine ähnliche Zusammensetzung wie eine nickelbasierte Superlegierung aufweist, wodurch der Anteil an γ' -Bildnern um Lot reduziert werden kann.
Abstract:
A combustion turbine component (10) includes a combustion turbine component substrate (16) and an alloy coating (14) on the combustion turbine component substrate. The alloy coating (14) includes a first amount, by weight percent, of cobalt (Co) and a second amount, by weight percent, of nickel (Ni), the first amount being greater than the second amount. The alloy coating further includes chromium (Cr), aluminum (Al), at least one rare earth element, and an oxide of the at least one rare earth element.