Abstract:
An example accumulator reservoir includes a housing. The housing contains a system fluid chamber, a working fluid chamber, and a residual chamber. Vent paths are configured to vent fluid from the residual chamber. Each of the vent paths extends nonlinearly between a first opening and a second opening.
Abstract:
A fluid system comprises a pressure vessel with a baffle oriented at a skew angle. The baffle divides the vessel into first and second volumes. A first port is provided to introduce a pressurizing fluid into the first volume, and a second port is provided to circulate a working fluid within the second volume. A purge aperture is provided to purge the pressurizing fluid from the second volume across the baffle into the first volume, and a flow aperture is provided to transfer the working fluid through the baffle between the first and second volumes.
Abstract:
An example accumulator reservoir includes a housing. The housing contains a system fluid chamber, a working fluid chamber, and a residual chamber. Vent paths are configured to vent fluid from the residual chamber. Each of the vent paths extends nonlinearly between a first opening and a second opening.
Abstract:
An apparatus for determining the weight of a payload in a bucket of a machine where the bucket is attached to a chassis of the machine by a linkage. The apparatus comprises an energy storage device for storing potential energy of the bucket, payload, and linkage when the bucket is moved from a first suspended position to a second suspended position. A mechanism provides physical data corresponding to a physical change in the energy storage device caused by storage of the potential energy and a processor calculates the weight of the payload using the physical data.
Abstract:
The invention relates to a hydraulic fluid accumulator (30) having a high-pressure chamber (32) and a low-pressure chamber (33), wherein the high-pressure chamber (32) provided with an equalizing volume (36) is disposed in the low-pressure chamber (33). Provided at the hydraulic fluid accumulator (30) is an external connection (34) for the equalizing volume (36), by means of which connection the equalizing volume (36) can be filled with a gas having a predefinable pressure.
Abstract:
An accumulator (ACC) in which a container main body (1) and a closure member (5) are screw-joined together. A reverse-buttress internal thread or an internal thread having an included angle of 90 degrees is used as an internal thread of the screw-joined portion. The reverse-buttress internal thread is formed in such a way that the inclination angle (β) of a clearance flank of the buttress internal thread is the inclination angle (β) of a reverse pressure flank (20A) receiving a load, the inclination angle (θ) of a pressure flank is the inclination angle (θ) of a reverse clearance flank (2B). The internal thread having an included angle of 90 degrees is formed in such a way that inclination angles (α),(γ) of both flanks are equal and the included angle (δ) is about 90 degrees.
Abstract:
A metallic bellows, composed of precipitation hardening stainless steel, includes ridge portions and valley portions formed alternately and continuously, an average grain size of 10 to 15 μm, and compressive residual stress of not less than 500 MPa provided to at least surfaces of the ridge portions and the valleys by surface working.
Abstract:
A hydraulic accumulator, especially a bladder accumulator, includes an accumulator housing (10), and a separation element disposed in and separating the accumulator housing interior into a gas chamber (16) adjoining an inlet (14) on the gas side from a fluid chamber (18) adjoining an inlet (20) on the fluid side. The inlet on the fluid side has a fluid connecting neck (22) having a valve support (40) disposed in the neck. The valve support has fluid openings (42), and a disk-shaped valve body (32) that tapers towards the valve shaft (46) on its side facing the valve support (40). The valve shaft can be pretensioned via a force accumulator (62) into the open position releasing the fluid opening, can be displaced into its closed position by a displacement of the separation element (12), and projects into the fluid chamber (18) in the open position. The valve body (32) is an integral, especially one-piece, component of the valve support (40) that is guided along its outer periphery (56) within the connecting neck (22) so as to be displaceable in it, creating a hydraulic accumulator that is comparatively simple and inexpensive in production.
Abstract:
A bellows-type hydraulic accumulator includes a shell, a bellows unit, and a stay in order to accumulate pressurized liquid within a liquid chamber, divided into a fixed-volume liquid chamber and a variable-volume liquid chamber communicating with the fixed-volume liquid chamber via a communication port formed in the stay. A pipe is inserted into a liquid inlet/outlet port communicating with the fixed-volume liquid chamber, to thereby form an inflow passage inside the pipe and an outflow passage outside the pipe. A tip end of the pipe is located within the communication port of the stay with a predetermined radial clearance formed between the tip end and a wall surface of the communication port, to thereby enable pressurized liquid to be supplied to the variable-volume liquid chamber from the tip end of the pipe and to be discharged from the variable-volume liquid chamber to the fixed-volume liquid chamber via the radial clearance.
Abstract:
A hydropneumatic pressure reservoir (1) forms a housing from at least two housing shells (3, 5) connected together. At least the end region of the one housing shell (5) includes an outwardly-extending, funnel-like guide surface between its free end and a sealing element for bringing together the two housing shells (3, 5). At least on elastic sealing element (41) is provided on at least one retaining surface for generation of a tensioning force on the boundary region (21) of the membrane (13). A simplified construction with improved sealing in the critical connection of the pressure reservoir is achieved.