Abstract:
An instrument determines a concentration of bacteria in a plurality of fluid samples, and comprises a housing, a rotatable platform, a plurality of fluid containers, a light source, a sensor, and a motor. The rotatable platform is within the housing. The fluid containers are located on the rotatable platform. Each fluid container holds a corresponding one of the plurality of fluid samples, and has an input window and an output window. The light source provides an input beam for transmission into the input windows of the fluid containers and through the corresponding fluid samples. The input beam creates a forward-scatter signal associated with the concentration of bacteria. The motor rotates the rotatable platform so that the input beam sequentially passes through each fluid sample. A sensor within the housing detects the forward-scatter signal exiting from the output window associated with the fluid sample receiving the input beam.
Abstract:
A method and an apparatus are presented for monitoring a concentration of a specific halogen in a body of water such as a spa or bathing unit for example. The apparatus comprises a housing in which is positioned an optical absorption analyzer for making first and second measurement of transmission of ultraviolet light from a light source emitting light at a specific wavelength. The second and first measurements are taken respectively before and after the ultraviolet light has travelled through a sample of water and are used to derive a concentration of the specific halogen. The derived concentration may then be communicated to a user using a display device and/or may be used to control operational components of a bathing unit for adjusting the concentration of halogen in the water. In some practical implementations, the apparatus may be embodied as a standalone device, which may be configured to float on the water of the bathing unit or, alternatively, may be configured for being installed in-line in a water circulation path of the bathing input by connecting the housing to circulation piping.
Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.
Abstract:
Systems and methods of the present disclosure are directed to detecting species within a fluid using a multi-pass absorption cell and a spectrometer. The absorption cell includes a plurality of mirrors arranged in a manner such that a detection light traverses multiple passes through the fluid within the absorption cell. In some implementations, the detection light is reflected by the plurality of mirrors to form optical paths in more than one plane. The system also includes an electronic unit configured to receive and process spectral data from the spectrometer. In some implementations, the electronic unit communicates with at least one computational unit over a communication interface to send a portion of the spectral data for processing. The electronic unit may also receive processed data from the computational unit.
Abstract:
A gas analysis device includes a probe tube, a flange, an optical system member, and heaters. The probe tube includes an optical path through which measurement light is projected onto a prescribed measurement region of a sample gas flowing through a flue and/or is received from the measurement region. The flange is fixed to the outer periphery of the probe tube and is attached to a pipe side wall. The optical system member projects measurement light onto the sample gas S within the measurement region and/or receives measurement light from the measurement region. The heaters are disposed within the flange and heats the portion where the probe tube and flange are fixed to each other.
Abstract:
A spectroscopic device includes a lamp house accommodating a light source inside, a spectrometer configured to disperse light from the lamp house, a temperature measurement means for measuring a temperature of the spectrometer, a heating means for heating the spectrometer, a storage means and a control unit. The storage means stores the detection temperature of the temperature measurement means at a time when an optical axis is stable in the spectrometer in a state where the light source is illuminated. The control unit is configured to control operation of the heating means, and to cause the heating means to operate, when the light source is illuminated from a light-off state, until a detection temperature of the temperature measurement means reaches the detection temperature stored in the storage means.
Abstract:
The present disclosure generally relates to systems, devices and methods for analyzing and processing samples or analytes. In one example configuration, a method of analyzing an analyte includes shaving a first layer of a plurality of layers of an analyte to expose a first surface of an analyte. The method includes positioning the first surface of the analyte over a window of a hyperspectral analyzation subassembly. The method further includes scanning the first surface of the analyte by the hyperspectral analyzation subassembly to obtain information regarding the analyte proximate the first surface. Other systems, devices and methods are disclosed herein.
Abstract:
This detection device has a holder and a heating unit. The holder holds a detection chip that has the following: a prism that has an incidence surface and a film-formation surface; a metal film formed on said film-formation surface; trapping bodies laid out on the surface of said metal film; and a substrate that is laid out on the surface of the metal film, and together with the metal film, forms a liquid collection section in which a liquid is collected. The heating unit heats at least one of the substrate, the prism, and the metal film either while in contact therewith or without contacting same. Also, the heating unit is positioned so as to avoid the path that excitation light takes from an excitation-light emission unit to the abovementioned incidence surface.
Abstract:
An apparatus and method for the measurement of wax appearance temperature and wax disappearance temperature. The apparatus includes the following. The sample receptacle having a receptacle opening, including a bottom, at least one side and an open top. The sample receptacle including an inlet and an outlet for sample insertion and removal. The at least one side about the receptacle opening being light absorbing. The sample receptacle including a transparent cover mounted over the open top. The bottom of the receptacle opening having a reflective upper surface. A thermo device temperature change of the sample. A thermometer to register current temperature of the sample. A viewing chamber above the transparent cover, where the viewing chamber is surrounded by material that is light absorbing. A light emitting device to project light through the viewing chamber and the transparent cover.
Abstract:
Provided is an optical analyzer which can promote enhancement of measurement sensitivity, cost reduction, size reduction, structural flexibility, disturbance resistance, and the like, at the same time. A laser device to be used in such optical analyzer is also provided. An optical analyzer comprises a laser light source (2); a wavelength selection element (3) for selecting and leading out light having a wavelength substantially equal to the absorption wavelength of an analysis object from among light outputted from the laser light source (2); an optical detection means (5) for detecting the intensity of light red out from the wavelength selection element (3); and a drive current control means (6) for increasing or decreasing the drive current of the laser light source (2) near a specified current value thereof for outputting light of the absorption wavelength, and setting the drive current at such a current value as the intensity of light detected by the optical detection means (5) has a peak value. The laser light source (2), the wavelength selection element (3), and the optical detection means (5) are mounted on a single substrate (11) which can regulate the temperature to a constant level.