Abstract:
The present invention provides a radiometer for simultaneously detecting luminescence and reflectance about a particular Fraunhofer line from a material (i.e. target) which includes an interchangeable optical filter assembly of lightweight construction for each Fraunhofer line of interest which substantially alleviates the adverse polarization effects normally experienced in radiometers of this type and which further provides an improved balance between the two light beams being sensed by the radiometer. The optical filter assembly includes a single beamsplitter which reflects the majority of the light from the target with little adverse polarization effects to a narrow band filter which passes only the light existing at the particular Fraunhofer line (i.e. "c" component of luminescence). The remaining smaller fraction of the light passes through the beamsplitter with only slightly greater polarization to a broad band filter which, in turn, passes only the light in the continuums adjacent the Fraunhofer line (i.e. "d" component of luminescence). The intensity of the light from the narrow and broad band filters are measured for use in calculating the luminescence and reflectance emanating from the target.
Abstract:
A method and apparatus for sensing fluorescent radiation emitted by a sample material using sunlight as the source of exciting radiation. A bundle of direct sunlight is encoded and split into beams each of which is combined with similar portions of a bundle of light containing solar reflected and solar-excited fluorescent energy components from the sample material. The sample bundle is encoded differently from the direct sunlight or reference bundle so that it may be distinguished subsequently. The two beams (each of which contain reference and sample components) are passed through two spectral filters and detected photoelectrically. One of the spectral filters is centered on a Fraunhofer absorption line. The other filter is centered a few Angstroms away in the solar continuum. The four signals corresponding to the intensity of the sample and reference beam components passing through each of the two spectral filters are separated electronically and combined in an analogue computer to yield a signal proportional to the fluorescivity of the sample material.
Abstract:
A method for determining national crop yields during the growing season is provided. In an embodiment, a server computer system receives agricultural data records for a particular year that represent covariate data values related to plants at a specific geo-location at a specific time. The system aggregates the records to create geo-specific time series for a geo-location over a specified time. The system creates aggregated time series from a subset of the geo-specific time series. The system selects a representative feature from the aggregated time series and creates a covariate matrix for each specific geographic area in computer memory. The system determines a specific crop yield for a specific year using linear regression to calculate the specific crop yield from the covariate matrix. The system determines a forecasted crop yield for the specific year using a sum of the specific crop yields for the specific year, as adjusted.
Abstract:
Systems and methods spectrally and radiometrically calibrate an optical spectrum detected with a color-image sensor of an optical spectrometer. When the color-image sensor includes a Bayer filter, the red-peaked, green-peaked, and blue-peaked spectral responses of the color filters forming the Bayer filter may be used to identify unique spectral signatures in the red, green, and blue color channels. These spectral signatures may be used to associate calibration wavelengths to the pixel locations of the color-image sensor where the spectral signatures are observed. A fitted model may then be used to associate a wavelength to each pixel location of the color-image sensor. These systems and methods account for translational shifts of the optical spectrum on the color-image sensor induced by optical image stabilization, and thus may aid optical spectrometry utilizing a digital camera in a smartphone or tablet computer.
Abstract:
The present invention comprises a surface to maximize the viewing of an impression in a vehicle body. This may comprise a fabric which has at least one dark colored stripe parallel to at least one light colored stripe; a compressible frame across which the said fabric is affixed, where when the frame is uncompressed the fabric is stretched taut across the frame and where the frame is compressed the fabric is slack across the frame; and a handle on the frame where a user can hold the frame and not interfere with the fabric affixed to said frame. When a user is holding the handle of the frame at an angle between 0° and 180°, the user can reflect radiant energy through said fabric onto the vehicle body and create a whorl reflection pattern on the impression to maximize viewing of said impression by the user.
Abstract:
A method for inspecting an object to assist in determining whether the object has a surface defect. The method includes moving the object in a first direction and illuminating the object under ambient lighting conditions. The method also includes capturing at least one image of the object under the ambient lighting conditions while the object moves in the first direction. In addition, the object is illuminated under object lighting conditions and at least one image of the object under the object lighting conditions is captured while the object moves in the first direction to provide at least one object image. Further, the method includes selecting at least one object image having at least one indication of a possible defect to provide images having defect candidates and comparing the defect candidates with previously defined characteristics associated with the defect to facilitate determination of whether a defect exists.
Abstract:
The present invention comprises a surface to maximize the viewing of an impression in a vehicle body. This may comprise a fabric which has at least one dark colored stripe parallel to at least one light colored stripe; a compressible frame across which the said fabric is affixed, where when the frame is uncompressed the fabric is stretched taut across the frame and where the frame is compressed the fabric is slack across the frame; and a handle on the frame where a user can hold the frame and not interfere with the fabric affixed to said frame. When a user is holding the handle of the frame at an angle between 0° and 180°, the user can reflect radiant energy through said fabric onto the vehicle body and create a whorl reflection pattern on the impression to maximize viewing of said impression by the user.
Abstract:
A method is provided for determining a visual range in daytime fog, the method (800) including a step of reading in and a step of ascertaining In the step of reading in, coordinates of at least one characteristic point of a brightness curve of a camera image of the fog are read in. The brightness curve represents brightness values of image points of the camera image along a reference axis of the camera image. In the step of ascertaining, a meteorological visual range in the camera image is ascertained using the coordinates, a meteorological contrast threshold, and a processing specification, in order to estimate the visual range in fog. The processing specification images location-dependent and/or direction-dependent scattered light through the fog in the camera image.
Abstract:
Technologies pertaining to determining when glare will be perceived by a hypothetical observer from a glare source and the intensity of glare that will be perceived by the hypothetical observer from the glare source are described herein. A first location of a potential source of solar glare is received, and a second location of the hypothetical observer is received. Based upon such locations, including respective elevations, and known positions of the sun over time, a determination as to when the hypothetical observer will perceive glare from the potential source of solar glare is made. Subsequently, an amount of irradiance entering the eye of the hypothetical observer is calculated to assess potential ocular hazards.