Abstract:
An inspection apparatus includes a handset (302) and an elongated inspection tube (112) extending from the handset. For reduction of heat energy radiating from one or more components of the apparatus, the apparatus includes a particularly designed heat sink assembly (928).
Abstract:
A detection system is provided, the detection system comprising a light source that generates excitation light having a wavelength sufficient to excite a fluorophore in a sample; an excitation filter positioned along a first line along a path of the excitation light, the excitation filter transmitting the excitation light from the light source; a beam splitter positioned along the first line, the beam splitter reflecting the excitation light transmitted by the excitation filter along a second line toward a mirror positioned on one side of the beam splitter, and passing emitted light reflected along the second line; the mirror, positioned to reflect the excitation light from the beam splitter to the fluorophore in the sample along a third line, normal to both the first and second lines, wherein the mirror further reflects emitted light emitted along the third line, along the second line toward the beam splitter; an emission filter positioned along the second line, on a second side of the beam splitter; and a detector that detects the emitted light transmitted by the emission filter.
Abstract:
A sensor comprising a tunable laser array (501-504), an optical head (505), a sample holder, (506), an optical detector (507), a heater cooler element (508), a controller and tuner (509), a battery and power supply unit (510), and a wireless transmitter (511).
Abstract:
The present disclosure, among other things, describes a reader system comprising a casing, an optical system, en electromechanical motor system, and one or more digital processors.
Abstract:
Appareil éthylomètre portable pour mesurer le taux de gaz partiel exhalé dans le fluide d'haleine en respectant un écart type inférieur à 0,007 mg/L pour toute concentration inférieure à 0,400 mg/L, un écart-type relatif inférieur à 1,75 % pour toute concentration supérieure ou égale à 0,400 mg/L et inférieure ou égale à 2,000 mg/L et un écart-type relatif inférieur à 6 % pour toute concentration supérieure à 2,000 mg/L, ce dispositif incluant une unité d'alimentation rechargeable, un dispositif d'émission d'un rayonnement infrarouge puisé, un récepteur infrarouge et une cuve de mesure dans laquelle circule le fluide, caractérisé en ce que, le dispositif d'émission comprenant un élément chauffant dont la puissance est comprise entre 60 mW et 130 mW, la cuve de mesure comprend un tube métallique d'un diamètre intérieur compris entre 5 et 12 mm, d'une longueur comprise entre 140 et 220 mm et dont la surface intérieure est polie et revêtue d'un dépôt réfléchissant au moins le rayonnement infrarouge de longueurs d'ondes comprises dans l'intervalle [9,10μm] et, à chaque extrémité du tube, un embout comprenant une section conique destinée à être placée dans l'axe du tube et dont l'angle d'ouverture est compris entre 8° et 30°, le dispositif d'émission infrarouge étant placé sur l'axe longitudinal du tube au niveau d'un des embouts, le récepteur étant placé sur l'axe longitudinal du tube au niveau de l'autre embout, le tube étant en outre muni de moyens de chauffage aptes à porter le tube à une température supérieure à 39°C.
Abstract:
An optical analysis system includes a light source configured to radiate a first light along a first ray path; a modulator disposed in the first ray path, the modulator configured to modulate the first light to a desired frequency; a spectral element disposed proximate the modulator, the spectral element configured to filter the first light for a spectral range of interest of a sample; a cavity in communication with the spectral element, the cavity configured to direct the first light in a direction of the sample; a conical mirror configured to convert the first light reflecting from the sample into a second light, the cavity being further configured to direct the second light; a beamsplitter configured to split the second light into a first beam and a second beam; an optical filter mechanism disposed to receive the first beam, the optical filter mechanism configured to optically filter data carried by the first beam into at least one orthogonal component of the first beam; a first detector mechanism in communication with the optical filter mechanism to measure a property of the orthogonal component to measure the data; a second detector mechanism configured to receive the second beam for comparison of the property of the orthogonal component to the second beam; an accelerometer configured to control the data acquisition such that only detector signals during the period of time when the system is in the proper orientation such that the material sample (e.g., aspirin) is in proximity to the interrogation window are used for calculation; a computer having a data acquisition and conversion card, the computer disposed in the system in communication with the first and second detector mechanisms for signal processing; and a battery and charging system disposed in the system in electrical communication with the system to provide stand-alone operation capability.
Abstract:
A sensor comprising a tunable laser array (501-504), an optical head (505), a sample holder, (506), an optical detector (507), a heater cooler element (508), a controller and tuner (509), a battery and power supply unit (510), and a wireless transmitter (511).
Abstract:
Instrumentation for measuring the amount of material dissolved in a liquid solution which utilizes electro-optic technology based on the Beer-Lambert Law is implemented either as a portable, battery powered model or integrated in an automated process monitoring system. In the portable, battery powered model, a sample probe (14) is inserted into a solution to be measured. The results of the measurement are displayed on a display (22). The displayed results are frozen for a predetermined period of time at the expiration of which, the power is turned off to conserve battery power. In the automated process monitoring model, a solution loading analyzer (100) is supplied with a sample of solution to be analyzed. A probe (14) positioned in a measurement well (200) is used to determine the ratio of incident light to light transmitted through the sample. A spray nozzle (212) is used for cleaning the probe head (16).