Abstract:
The present invention relates to a biological sample quality apparatus for determining the quality of a biological sample. The apparatus includes a sample receiver for receiving the biological sample. One or more light sources are provided for supplying light to the sample. An image sensor is provided for capturing an image of the lit sample. The apparatus also includes an image processor for image processing the captured image to determine the quality of the sample. Advantageously, image processing may be used to determine the quality of a sample for use in collection sites and screening laboratories so that acceptability can be determined prior to analyzing the sample. Determination that the sample is of sufficient quality (e.g. sufficient biomaterial) prior to analyzing saves wastage of laboratory time and expense of materials and chemicals. The apparatus may be in the form of desktop or hand-held portable variations.
Abstract:
Methods for determining whether certain compounds, in particular crystals, are present in a sample of a biological fluid that indicates an individual has a particular disease or condition, such as but not limited to gout, pseudogout or urinary tract stones. In some embodiments, the methods include the steps of digestion and filtration of a sample of synovial fluid in order to isolate, if present, monosodium urate monohydrate (MSU), calcium pyrophosphate dihydrate (CPPD), or calcium phosphate crystals from the sample, wherein the filtrate is analyzed with a Raman device to ascertain the presence and type of the crystals. Devices for performing steps of the method are disclosed.
Abstract:
The invention relates to a characterization device (50) for characterizing a sample (S) comprising: a memory (MEM) storing a measured spectrum (As+p) of said sample, performed through a translucent material, and a measured spectrum of the translucent material (Ap), a processing unit (PU) configured to: determine a spectral energy (Es+p) of the measured spectrum (As+p) of the sample through the translucent material (As+p), estimate a coefficient ({circumflex over (γ)}) from said spectral energy (Es+p) and, determine a corrected spectrum (Âs) of the sample from the measured spectrum (As+p) of the sample through the translucent material and from a corrected spectrum of the translucent material (Âp), said corrected spectrum of the translucent material (Âp) being determined from the measured spectrum of the translucent material (Ap) and from the estimated coefficient ({circumflex over (γ)}).
Abstract:
A personal liquid analysis system includes a portable liquid analyzer device, a mobile application as a user interface, and a cloud server for data analysis. The compact and portable liquid analyzer device is integrated by miniaturized near-infrared (NIR) optical sensors setup for spectroscopy measurement from a sample cell, control circuits, I/O user interface modules and wireless communication modules. The analyzer can be used to collect NIR spectra data from a liquid sample in the sample cell, and to transmit the data to a cloud server where compositional information is calculated, and presented to the user on the device and/or on a mobile application. The personal liquid analysis system enables the user to rapidly acquire qualitative and/or quantitative compositional information from liquid samples for a wide range of applications.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
A defect inspection method includes irradiating a sample with laser, condensing and detecting scattered light beams, processing signals that detectors have detected and extracting a defect on a sample surface, and outputting information on the extracted defect. Detection of the scattered light beams is performed by condensing the scattered light beams, adjusting polarization directions of the condensed scattered light beams, mutually separating the light beams depending on the polarization direction, and detecting the light beams by a plurality of detectors. Extraction of the defect is performed by processing output signals from the detectors by multiplying each detection signal by a gain, discriminating between a noise and the defect, and detecting the defect.
Abstract:
A method for determining a shape correction value F for a laboratory liquid-analysis cuvette comprising a cuvette body with a circular cross-section for a photometric liquid analysis includes optically measuring an inside diameter d1 or an outside diameter d0 of the cuvette body to obtain a measured cuvette body diameter d1;d0. A shape correction value F is calculated from the measured cuvette body diameter d1;d0. The shape correction value F for the cuvette body is stored.
Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
Systems, methods, and apparatuses are provided for identifying an optimal spectral match and potentially display the compared spectra. A sample spectrum of a sample substance can be compared to reference spectra to identify matches, thereby determining possibilities for what the sample substance is. Correction parameter(s) may be used for the sample spectrum and/or the reference spectrum. Initial value(s) for the correction parameter(s) can be applied to the sample spectrum and/or a reference spectrum, and a similarity score can be determined. The value(s) for the correction parameter(s) can be updated and iteratively improved to provide an optimal similarity score that satisfies a convergence criterion. Data about the reference substances having optimal similarity scores that are above a threshold can be output to a user, e.g., the reference spectra can overlay the sample spectrum. A user can then make a final determination of which reference substance corresponds to the sample substance.
Abstract:
The present invention relates to a method for generating a compensation matrix during a substrate inspection. The method comprises the steps of: selecting information of N1 (N1≧2) feature objects which are randomly predetermined within a field of view (FOV) on a substrate; generating a first compensation matrix on the basis of information of the feature objects which are extracted on the substrate; comparing an offset value of each of all the feature objects with a predetermined reference value by applying all the feature objects within the FOV to the compensation matrix to count the number of the feature objects of which the offset value of the each of all the feature objects is less than the predetermined reference value; and repeatedly performing the above steps N2 times (N2≧1), and generating a second compensation matrix using information of the feature objects which have the offset value which is less than the predetermined reference value, in case the number of the counted feature objects is the maximum.