Abstract:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
Abstract:
The disclosed technology provides an array substrate and a method of manufacturing the array substrate. An embodiment of the method comprises: a first mask process of forming an inorganic material protrusion on a base substrate; a second mask process of forming a reflective region pattern, a gate line, a gate electrode branched from the gate line, and a common electrode; a third mask process of forming an active island and a data line formed and forming a source electrode connected to the data line and a drain electrode on the active island and a channel; a fourth mask process of forming an insulation material layer, treating the insulation material layer to form a planarization layer, and forming a through hole above the drain electrode; and a fifth mask process of forming a pixel electrode and connected to the drain electrode via the through hole in a reflective region.
Abstract:
Electro-optic elements are becoming commonplace in a number of vehicular and architectural applications. Various electro-optic element configurations provide variable transmittance and or variable reflectance for windows and mirrors. The present invention relates to various thin-film coatings, electro-optic elements and assemblies incorporating these elements.
Abstract:
An active matrix substrate includes, on a substrate, a plurality of switching elements using a silicon layer, and a conductive member having a substantially even surface and constituting a plurality of pixels. An insulating member containing a silicon atom is disposed at an end of said conductive member substantially continuous with said even surface.
Abstract:
Disclosed herein is a method of producing a display device comprising a substrate and a plurality of conductive members provided on the substrate, said conductive members each having a substantially even surface and making up pixels, wherein the conductive members are smoothed by means of chemical mechanical polishing.