Abstract:
In response to an instruction to dismount a storage volume, for example, an object in the storage volume is identified and a handle that references the object is closed. Once an exclusive lock on the storage volume is acquired, the storage volume can be dismounted. The storage volume can then remounted.
Abstract:
PROBLEM TO BE SOLVED: To widen usage in a state where a lock screen is displayed.SOLUTION: In one embodiment, a device (e.g., smartphone) 1 comprises: a touch screen display that displays a lock screen provided with a display region in which any of a plurality of icons is displayed; and a controller that displays any of the icons in the display region in response to a first gesture detected by the touch screen display in a state where the lock screen is displayed. For example, the device (e.g., smartphone) 1 switches an icon displayed in the display region depending on the movement distance of a swipe when a user's finger is swiped clockwise on a path.
Abstract:
Memory subsystem error management enables dynamically changing lockstep partnerships. A memory subsystem has a lockstep partnership relationship between a first memory portion and a second memory portion to spread error correction over the pair of memory resources. The lockstep partnership can be preconfigured. In response to detecting a hard error in the lockstep partnership, the memory subsystem can cancel or reverse the lockstep partnership between the first memory portion and the second memory portion and create or set a new lockstep partnership. The detected error can be a second hard error in the lockstep partnership. The memory subsystem can create new lockstep partnerships between the first memory portion and a third memory portion as lockstep partners and between the second memory portion and a fourth memory portion as lockstep partners. The memory subsystem can also be configured to change the granularity of the lockstep partnership when changing partnerships.
Abstract:
One embodiment provides an apparatus. The apparatus includes a processor, a chipset, a memory to store a process, and logic. The processor includes one or more core(s) and is to execute the process. The logic is to acquire performance monitoring data in response to a platform processor utilization parameter (PUP) greater than a detection utilization threshold (UT), identify a spin loop based, at least in part, on at least one of a detected hot function and/or a detected hot loop, modify the identified spin loop using binary translation to create a modified process portion, and implement redirection from the identified spin loop to the modified process portion.
Abstract:
Embodiments may provide a method for performing a replay of a previous execution of a program. The method includes generating an order of recorded chunks of instructions across a plurality of recorded threads based, at least in part, on log files generated from the previous execution of the program. The method includes initiating execution of the program, the executing program having a plurality of threads, each thread having a number of chunks of instructions. The method includes intercepting, by a virtual machine unit executing on a processor, an instruction of a chunk before the instruction is executed. The method includes determining, by a replay module executing on the processor, that the chunk is an active chunk if the chunk is currently in line for execution according to the order of recorded chunks, and responsive to a determination that the chunk is the active chunk, executing the instruction.
Abstract:
Methods, systems, and computer-readable and executable instructions are provided for checkpointing using a field programmable gate array (FPGA). Checkpointing using FPGA can include checkpointing data within a region of server's contents to memory and monitoring the checkpointed data using the FPGA.