Abstract:
The present invention provides a method for forming on a medical device, preferably an ophthalmic lens, more preferably a contact lens, a diffusion-controllable coating capable of controlling the out-diffusion or release of guest materials from the medical device. The method of the invention comprises: (1) applying one layer of clay and optionally one or more layers of polyionic materials onto the medical device; or (2) applying alternatively a layer of a first polyionic material and a layer of a second polyionic material having charges opposite of the charges of the first polyionic material onto the medical device and releasing the coated medical device into a releasing medium having a composition capable of imparting a desired permeability to the diffusion-controllable coating on the medical device.
Abstract:
A method of applying a metal coating to optical element, such as an optical waveguide, comprising the steps of partially depleting stabilizers in an electroless metallic solution and immersing an optical waveguide in the electroless metallic solution to deposit the metal coating to the optical waveguide. The step of partially depleting may include creating an electroless metallic solution having a sodium hypophoshite concentration of about 25 grams per liter. The electroless metallic solution may comprise a Fidelity solution 4865A, a Fidelity solution 4865B and de-ionized water in a ratio of 1:1:18; and sodium hypophosphite crystals. Alternatively, the step of partially depleting may include placing a dummy load into the electroless metallic solution. The dummy load may be a rectangular block of metal, formed of a low carbon steel, and may have a threaded cylindrical passage therein. After depleting the stabilizers, the optical waveguide is immersed in the electroless metallic solution for a predetermined length of time depending on a desired deposition thickness.
Abstract:
The present invention introduces a concept of nullsmartnull ribbons, which use functionally tensioned optical fibers during the manufacture of fiber optic ribbons to create fiber ribbons with controlled geometrical configuration, optimized strain distribution and reduced attenuation. The ribbons may have flat or bowed cross section and be straight along the length or curved in its plane, or twisted unidirectionally, or periodically. These shapes and residual stress-strain state are induced and controlled by using tension functions instead of traditional constant-value tension per fiber during the ribbon manufacture. Further, the present invention reduces signal loss and/or attenuation in ribbon fibers caused by an increase in the strain variation from tensile strain to compressive strain along the length of the individual fibers when ribbons are manufactured, stacked, stranded around a strength member or twisted and bent during cable installation. In a first embodiment of the present invention, either a symmetric or non-symmetric load distribution is applied across the fibers being placed or drawn into a ribbon structure to eliminate or control residual twist in a completed fiber ribbon. Additionally, in the present invention, the load distribution on the fibers of a ribbon can be varied (e.g. periodically changed) along the length of the ribbon to provide a ribbon with the required design characteristics for any particular application. In a second embodiment of the invention, a fiber optic ribbon is made up of a plurality of sub-unit ribbons arranged in substantially the same plane. Each sub-unit ribbon includes a plurality of optical fibers coated by sub-unit matrices.
Abstract:
There is disclosed a manufacturing method of a large-area polarization element (10) whose film formed on a surface has an excellent adhesion. The method includes the steps of: forming an under film (12) on a glass substrate (11); coating the under film (12) with a metal dispersion; heating the metal dispersion; and forming a metal dispersed film (13) containing a fine metal particle (14). When the metal dispersion is heated, a noble metal ion in the metal dispersion is reduced to generate the fine metal particle (14). The fine metal particle (14) interacts with the under film (12), and is localized in the vicinity of an interface (16) of the under film (12) and metal dispersed film (13).
Abstract:
An image forming element is disclosed which is easy to manufacture, which can form images easily and at a low cost, and which is stable without fear of environmental problems arising at a time of disposal. Also disclosed is an image forming device which utilizes the image forming element and which can form color images. The image forming element contains at least a film in which rod-shaped bodies are oriented and which reflects incident light as colored interference light. The image forming device is equipped with at least the image forming element, and a means for irradiating light for irradiating light onto the image forming element. The image forming element reflects, as interference light, light irradiated by the means for irradiating light. The wavelength of the interference light is 300 to 810 nm.
Abstract:
A transparent substrate having a glare reducing diffuser surface coating in which the coating has a thickness of less than about 3 microns. The diffuser surface coated substrate is bendable, overcoatable with functional coatings such as transparent conductor coatings, abrasion resistant, and generally serviceable for its intended use.
Abstract:
A method of surface treatment for a lens of a vehicle lamp. The method comprises forming a hard coating film on a outer surface of the lens by heating to harden after the hard coating film is applied onto the outer surface of the lens; cooling the lens formed with the hard coating film until the inner surface of the lens has a predetermined temperature; and forming a antifogging coating film on a inner surface of the lens by heating to dry after the antifogging coating film is applied onto the inner surface of the lens.
Abstract:
The present invention provides an optically clear, hydrophilic coating upon the surface of a non-plasma treated hydrophobic hydrogel lens by heating the lens in an aqueous solution containing a surface-protective agent. Alternately, the non-plasma treated hydrophobic hydrogel lens may be subjected to ultrasonication while immersed in an aqueous solution containing a surface-protective agent.
Abstract:
Disclosed are an antiglare film having a high level of anti-scintillation properties, high sharpness of transmitted images, high light transmittance (total light transmittance), and a high level of external light reflection preventive properties, and a process for producing the antiglare film. A resin and non-agglomerative particles having a specific particle diameter are selected so that the difference in refractive index between the resin and the particles is 0.05 to 0.15. The resin and the non-agglomerative particles are brought to a coating composition using, as a solvent, a good solvent for the resin and a poor solvent for the resin. The coating composition is coated onto a substrate film to form a coating which is then dried. In the course of the drying, as the amount of the good solvent in the coating decreases, the poor solvent acts to cause the gelation of the particles and the resin. Thus, good concaves and convexes can be advantageously formed on the surface of the coating. The layer thus formed can meet various property requirements for antiglare films.
Abstract:
A system and method for detecting parallel marketing of an item, include forming at least one of a coating and a code on the item, interrogating the at least one of the coating and said code, and determining from the interrogating whether the item has been transferred from an authorized merchant to an unauthorized merchant.