Abstract:
A system records use of a structure deployed in operative association with heart tissue in a patient. An image controller generates an image of the structure while in use in the patient. An input receives data including information identifying the patient. An output processes the image in association with the data as a patient-specific, data base record for storage, retrieval, or manipulation.
Abstract:
Systems and methods for locating an operative element within an interior body space use a locating probe, which includes at least one transmitting element to transmit an electric waveform output within at least a portion of the space. The systems and methods also use a sensing element, which is adapted to be carried by the operative element to sense a local electric waveform within the space. A processing element coupled to the sensing element generates a processed output that locates the sensing element relative to the locating probe based, at least in part, upon a differential comparison of the waveform output and the sensed local waveform.
Abstract:
Compound steering assemblies (28), usable in both diagnostic and therapeutic applications, enable a physician to swiftly and accurately steer the distal section (16) of the catheter (10) in multiple planes or complex curves to position and maintain ablation and/or mapping electrodes (18) in intimate contact with an interior body surface.
Abstract:
This invention is systems and methods that ablate body tissue using an electrode (16) for contacting tissue at a tissue electrode interface to transmit ablation energy at a determinable power level. The systems and methods include an element (50) to remove heat from the electrode (16) at a determinable rate. The systems and methods employ a processing element (98) to derive a prediction of the maximum tissue temperature condition occurring beneath the tissue electrode interface. The processing element (98) controls the power level of ablation energy transmitted by the electrode (16), or the rate at which the electrode (16) is cooled, or both, based, at least in part, upon the maximum tissue temperature prediction.
Abstract:
Analog or digital systems (10) and methods generate a composite signal derived from a biological event in a time sequential fashion. A first set of signals derived from a biological event using a first group of sensors (20) during a first time interval is input. A second set of signals derived from the biological event during a second time interval sequentially after the first time interval using a second group of sensors (36) is input. The second group of sensors has at least one common sensor that is part of the first group and other sensors that are not part of the first group. The first and second sets of signals are time aligned using signals sensed by the at least one common sensor, thereby generating the composite signal. The time alignment is done by shifting the first and second sets of signals either with or without computing a time difference between them.
Abstract:
An electrode support structure has a guide body (12) having a distal end and a stylet (80) having a bendable portion extending along an axis outside the distal end of the guide body (12). The structure also includes at least one flexible spline leg (22) having a body and a far end extending beyond the distal end of the guide body (12) and attached to the bendable portion of the stylet (80). The spline leg (22) is normally flexed between the distal guide body end and the bendable stylet portion in a first direction that extends along and radially outward of the axis of the stylet (80). At least one electrode element (28) is on the flexible spline leg (22). The bendable stylet portion (80) applies tension to flex the spline leg (22) in a second direction.
Abstract:
Systems and associated methods position arrays of multiple emitters of ablating energy (30) in straight or curvilinear positions in contact with tissue to form elongated lesion patterns (200)-(206). The elongated lesion patterns can be continuous (200, 204) or interrupted (202, 206), depending upon the orientation of the energy emitters.
Abstract:
A catheter carries a functional component, like an ablating electrode, having a predetermined operating characteristic. The catheter also electronically retains an identification code that uniquely identifies the predetermined operating characteristic. The catheter is capable of transmitting the identification code to an external reader in response to a predetermined prompt. An associated apparatus, like an ablating energy source, reads the identification code and compares it to predetermined operating criteria. The apparatus will not permit interaction with the functional catheter component, if the identification code indicates that the functional characteristics of the catheter are not suited for the intended interaction. The catheter can also store usage information, to prevent reuse.
Abstract:
Systems and associated methods form larger and deeper lesion patterns by shaping a support body with multiple electrodes (30) in ways that increase the density of the electrodes (30) per given tissue area. The support body (12) can carry either elongated, continuous electrodes (80) or arrays of non-contiguous, segmented electrodes (30).
Abstract:
Systems (10) for ablating tissue measure the current and voltage delivered to the associated electrode assembly (16) and generate measured current and voltage signals. The systems (10) divide the measured voltage signal by the measured current signal to derive a measured tissue impedance signal. The systems (10) perform control functions based upon the measured tissue impedance signal.