Abstract:
Systems and methods employ an energy emitting electrode (34) to heat tissue. The systems and methods derive a temperature prediction for a future time period. The systems and methods control the application of energy to the energy emitting electrode (34) based, at least in part, upon the temperature prediction.
Abstract:
A catheter (14) carries a functional component (16), like an ablating electrode, having a predetermined operating characteristic. The catheter (14) also electronically retains an identification code that uniquely identifies the predetermined characteristic. The catheter (14) is capable of transmitting the identification code to an external reader in response to a predetermined prompt. An associated apparatus, like an ablating energy source (12), reads the identification code and compares it to predetermined operating criteria. The apparatus (12) will not permit interaction with the functional catheter component (16) if the identification code indicates that the functional characteristics of the catheter (14) are not suited for the intended interaction. The catheter (14) can also store usage information to prevent reuse.
Abstract:
An antenna assembly (10) has an energy propagating region (16) that is encapsulated in a material having a high dielectric constant for minimizing the loss of dissipating conductive heat patterns about the energy propagating region (16).
Abstract:
Systems and methods employ an energy emitting electrode (16) to heat tissue. The systems and methods follow a prescribed temperature set curve in which a set point temperature changes over time to control the application of energy to the electrode (16).
Abstract:
Systems (10) for ablating tissue measure the current and voltage delivered to the associated electrode assembly (16) and generate measured current and voltage signals. The systems (10) divide the measured voltage signal by the measured current signal to derive a measured tissue impedance signal. The systems (10) perform control functions based upon the measured tissue impedance signal.
Abstract:
A combination catheter for both detecting monophasic action potentials and ablating surface tissue in an in vivo heart of a patient is provided. The apparatus includes a catheter probe having a terminal tip portion (10) and an electrode (20) carried on the tip such that a portion of the tip electrode (20) is exposed to ambient. A reference electrode (50) is spaced along the tip from the first electrode for supplying a reference potential signal. An ablating electrode (30) is located adjacent to but electrically insulated from both the tip (20) and reference (50) electrodes for providing electromagnetic energy to the tip. The electrodes are electrically connected to the proximal end of the catheter through individual conductors or wires (22, 32 and 50) that run through an insulated cable. An electronic filter is provided to permit the recording of MAPs during ablation without radiofrequency interference. The catheter may also include standard mapping and/or pacing electrodes (80) and (75) respectively. The catheter may further include a steering mechanism for positioning the catheter at various treatment sites in the heart, and a structure for holding the tip electrode in substantially perpendicular contact with heart tissue with a positive pressure, and for spacing the reference electrode from the heart tissue.
Abstract:
A cardial ablation system (10) and method employs an ablation electrode (16) having an energy emitting body (92). A temperature sensing element (94) senses the temperature of the tissue being ablated by the electrode (16). The system (10) monitors tissue temperature using the temperature sensing element (94). A control element (12) controls the therapeutic characteristics of the ablated lesion based upon sensed tissue temperature conditions.
Abstract:
An ablation electrode (16) carries a temperature sensing element (94) for measuring the temperature of the tissue being ablated. A thermal insulating element (88) associated with the sensing element blocks the transfer of heat energy from between the temperature sensing element (94) and the electrode (16). The temperature sensing element therefore measures temperature without being affected by the surrounding thermal mass of the electrode (16).
Abstract:
A combination catheter for both detecting monophasic action potentials and ablating surface tissue in an in vivo heart of a patient is provided. The apparatus includes a catheter probe having a terminal tip portion (10) and an electrode (20) carried on the tip such that a portion of the tip electrode (20) is exposed to ambient. A reference electrode (50) is spaced along the tip from the first electrode for supplying a reference potential signal. An ablating electrode (30) is located adjacent to but electrically insulated from both the tip (20) and reference (50) electrodes for providing electromagnetic energy to the tip. The electrodes are electrically connected to the proximal end of the catheter through individual conductors or wires (22, 32, and 50) that run through an insulated cable. An electronic filter is provided to permit the recording of MAPs during ablation without radiofrequency interference. The catheter may also include standard mapping and/or pacing electrodes (80 and 75) respectively. The catheter may further include a steering mechanism for positioning the catheter at various treatment sites in the heart, and a structure for holding the tip electrode in substantially perpendicular contact with heart tissue with a positive pressure, and for spacing the reference electrode from the heart tissue.