Abstract:
A combination catheter for both detecting monophasic action potentials and ablating surface tissue in an in vivo heart of a patient is provided. The apparatus includes a catheter probe having a terminal tip portion and an electrode carried on the tip such that a portion of the tip electrode is exposed to ambient. A reference electrode is spaced along the tip from the first electrode for supplying a reference potential signal. An ablating electrode is located adjacent to but electrically insulated from both the tip and reference electrodes for providing electromagnetic energy to the tip. The electrodes are electrically connected to the proximal end of the catheter through individual conductors or wires that run through an insulated cable. An electronic filter is provided to permit the recording of MAPs during ablation without radiofrequency interference. The catheter may also include standard mapping and/or pacing electrodes. The catheter may further include a steering mechanism for positioning the catheter at various treatment sites in the heart, and a structure for holding the tip electrode in substantially perpendicular contact with heart tissue with a positive pressure, and for spacing the reference electrode from the heart tissue.
Abstract:
Systems and methods heat or ablate body tissue by positioning an electrode to transmit heat or ablation energy to a tissue region. The systems and methods measure a first temperature using a temperature sensing element associated with the electrode. The systems and methods also measure a second temperature using a temperature sensing element associated with the electrode. The systems and methods process at least one of the first and second temperatures to derive a prediction of maximum temperature of the tissue region. The systems and methods generate an output that controls the transmission of the heating or ablation energy based, at least in part, upon the maximum tissue temperature prediction.
Abstract:
A system records use of a structure deployed in operative association with heart tissue in a patient. An image controller generates an image of the structure while in use in the patient. An input receives data including information identifying the patient. An output processes the image in association with the data as a patient-specific, data base record for storage, retrieval, or manipulation.
Abstract:
A system records use of a structure deployed in operative association with heart tissue in a patient. An image controller generates an image of the structure while in use in the patient. An input receives data including information identifying the patient. An output processes the image in association with the data as a patient-specific, data base record for storage, retrieval, or manipulation.
Abstract:
A combination catheter for both detecting monophasic action potentials and ablating surface tissue in an in vivo heart of a patient is provided. The apparatus includes a catheter probe having a terminal tip portion and an electrode carried on the tip such that a portion of the tip electrode is exposed to ambient. A reference electrode is spaced along the tip from the first electrode for supplying a reference potential signal. An ablating electrode is located adjacent to but electrically insulated from both the tip and reference electrodes for providing electromagnetic energy to the tip. The electrodes are electrically connected to the proximal end of the catheter through individual conductors or wires that run through an insulated cable. An electronic filter is provided to permit the recording of MAPs during ablation without radiofrequency interference. The catheter may also include standard mapping and/or pacing electrodes. The catheter may further include a steering mechanism for positioning the catheter at various treatment sites in the heart, and a structure for holding the tip electrode in substantially perpendicular contact with heart tissue with a positive pressure, and for spacing the reference electrode from the heart tissue.
Abstract:
Porous electrode assemblies for tissue heating and ablation systems and methods enable ionic transport of electrical energy to occur substantially free of liquid perfusion.
Abstract:
Compound steering assemblies (28), usable in both diagnostic and therapeutic applications, enable a physician to swiftly and accurately steer the distal section (16) of the catheter (10) in multiple planes or complex curves to position and maintain ablation and/or mapping electrodes (18) in intimate contact with an interior body surface.
Abstract:
This invention is devices and methods for ablating body tissue which use wire (44) wound about a support body (12) in adjacent windings to form one or more elongated electrodes. A connection couples the wire to a source of ablation energy for transmission by the elongated electrode to ablate tissue. The adjacent windings are spaced apart to impart enhanced flexibility to the elongated electrode during use.
Abstract:
Systems and methods use an array (20) of multiple electrodes (24) supported for operative association with a region of heart tissue, in tandem with a roving second electrode (36) supported for movement relative to the multiple electrodes for operative association with selected different regions of endocardial tissue within the heart. An analog or digital processing element (32) conditions one of the multiple electrodes and the roving electrode to emit a pacing signal while the other one of the multiple electrodes and the roving electrode records paced electro-grams occurring as a result of the pacing signal. A template of cardiac event of known diagnosis sensed using the array of multiple electrodes is input. A sample of a cardiac event acquired by pacing from at least one roving electrode and sensed with the array of multiple electrodes is input. The processing element and method electronically compare the sample to a template and generate an output.
Abstract:
Systems and methods provide nonlinear, non-median filters (56) for signals derived from biological events. The systems and methods select a set of n sample values arranged with respect to time from the derived biological signal input. The systems and methods arrange the n sample values of the set into ordered positions following a predetermined permutation. The systems and methods select one of the ordered positions z within the permutation, where z is an odd positive integer greater or equal to one but less than or equal to n. The systems and methods generate a processed output (54) comprising the sample value occupying the ordered position z in the permutation.