Abstract:
A signal processor related to frame communication which is proceeded based on allocated unit communication periods, in which each communication device recognizes the end of communication of a frame based on a received signal, and then starts a communication action of the next frame, the signal processor has a period detection section which detects that a period is currently used for communication of a frame; a pattern detection section which detects, from the received signal, a first signal pattern by which the end of communication of the frame is recognized; and an output processing section which outputs the received signal to a controller connected thereto, configured to instruct, upon detection of the first signal pattern in the period being currently used for communication of a frame, the controller to halt startup of communication action of the next frame, until the period being currently used for communication of a frame comes to the end, to thereby prevent an event such that frames are transmitted from a plurality of communication devices simultaneously, and to thereby allow the communication action for the next frame to proceed correctly.
Abstract:
In a pad forming region electrically connecting an element forming region to the outside, in which a low dielectric constant insulating film is formed in association with in the element forming region, a Cu film serving as a via formed in the low dielectric constant insulating film in the pad forming region is disposed in higher density than that of a Cu film serving as a via in the element forming region. Hereby, when an internal stress occurs, the stress is prevented from disproportionately concentrating on the via, and deterioration of a function of a wiring caused thereby can be avoided.
Abstract:
Phase detector circuitry for a phase-locked loop frequency synthesizer, the phase detector circuitry comprising a reference input configured to receive a reference signal; a feedback input configured to receive a divided signal from divider circuitry in a feedback path of the phase-locked loop; and pulse generation circuitry configured to generate control pulses for controlling a charge pump in the phase-locked loop in accordance with a frequency and phase relationship between the reference signal and the divided signal; wherein the divided signal comprises a pulse having a length shorter than a half period of the divided signal, and wherein the pulse generation circuitry is configured to generate the control pulses by masking the reference signal using the pulse of the divided signal as a mask, so as to define the edges of the control pulses from the edges of the divided signal and an edge of the reference signal.
Abstract:
The semiconductor device comprises: insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a, wherein the groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Whereby, the defective fil ling of the buried conductor is prevented, and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced, so that the step cannot be influential on the upper interconnection layers and insulating layers. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented, and resultantly the semiconductor device can have high water resistance and high interconnection reliability.
Abstract:
A pulse generator generates a plurality of column pulses in response to a read command. An address counter outputs addresses subsequent to an external address supplied in association with the read command in succession as internal addresses. A column decoder successively selects column selecting lines in synchronization with the column pulses. A plurality of bits of data read from memory cells in response to a single read command RD is successively transmitted to a common data bus line through column switches. This can reduce the number of data bus lines to a minimum, preventing an increase in chip size. Since a single data bus line can transmit a plurality of bits of data, it is possible to minimize the size of the memory region to be activated in response to a read command. This consequently allows a reduction in power consumption.