Abstract:
A method for manufacturing three-dimensional memory, comprising the steps of: forming a stack structure composed of a plurality of first material layers and a plurality of second material layers on a substrate; etching the stack structure to expose the substrate, forming a plurality of first vertical openings; forming a filling layer in each of the first openings; etching the stack structure around each of the first openings to expose the substrate, forming a plurality of second vertical openings; forming a vertical channel layer and a drain in each of the second openings; removing the filling layer by selective etching, re-exposing the first openings; partially or completely removing the second material layers by lateral etching, leaving a plurality of recesses; forming a plurality of gate stack structure in the recesses; forming a plurality of common sources on and/or in the substrate at the bottom of each of the first openings. In accordance with the three-dimensional memory manufacturing method of the present invention, the deep trenches of word-line in the TCAT three-dimensional device are replaced with deep-hole etching to realize the same function, thereby improving the integration density, simplifying the etching process of stacked structure, and maintaining the control performance of the metal gate.
Abstract:
A fin arrangement and a method for manufacturing the same are provided. An example method may include: patterning a substrate to form an initial fin on a selected area of the substrate; forming, on the substrate, a dielectric layer to substantially cover the initial fin, wherein a portion of the dielectric layer located on top of the initial fin has a thickness substantially less than that of a portion the dielectric layer located on the substrate; and etching the dielectric layer back to expose a portion of the initial fin, wherein the exposed portion of the initial fin is used as a fin.
Abstract:
Semiconductor devices and methods for manufacturing the same are provided. An example method may include: forming a sacrificial gate stack on a substrate; forming a gate spacer on sidewalls of the sacrificial gate stack; forming an interlayer dielectric layer on the substrate and planarizing it to expose the sacrificial gate stack; partially etching back the sacrificial gate stack to form an opening; expanding the resultant opening so that the opening is in a shape whose size gradually increases from a side adjacent to the substrate towards an opposite side away from the substrate; and removing a remaining portion of the sacrificial gate stack and forming a gate stack in a space defined by the gate spacer.
Abstract:
A method for manufacturing a fin structure. The method includes: forming a first semiconductor layer and a second semiconductor layer sequentially on a substrate; patterning the second and first semiconductor layers to form an initial fin; selectively etching the first semiconductor layer of the initial fin so that the first semiconductor layer has a lateral recess; forming an isolation layer having a portion that fills the lateral recess, wherein the isolation layer, except the portion that fills the lateral recess, has a top surface lower than a top surface of the first semiconductor layer but higher than a bottom surface of the first semiconductor layer, and thus defines a fin above the isolation layer; and forming a gate stack intersecting the fin on the isolation layer.
Abstract:
Provided are a semiconductor device and a method of manufacturing the same. An example device may include: a fin formed on a substrate; a gate stack formed on the substrate and intersecting the fin, wherein the gate stack is isolated from the substrate by an isolation layer, and a Punch-Through Stopper (PTS) formed under the fin, including a first section directly under a portion of the fin where the fin intersects the gate stack and second sections on opposite sides of the first section, wherein the second sections each have a doping concentration lower than that of the first section.
Abstract:
A method of manufacturing a FinFET device is provided, comprising: a. providing a substrate (100); b. forming a fin (200) on the substrate; c. forming an shallow trench isolation structure (300) on the substrate; d. forming an sacrificial gate stack on the isolation structure, wherein the sacrificial gate stack intersects the fin; e. forming source/drain doping regions by ion implantation into the fin; f. depositing an interlayer dielectric layer (400) on the substrate; g. removing the sacrificial gate stack to form a sacrificial gate vacancy; h. forming an doped region (201) under the sacrificial gate vacancy; i. etching the shallow trench isolation structure (300) under the sacrificial gate vacancy until the top surface of the shallow trench isolation structure (300) levels with the bottom surface of the source/drain doping regions; j. forming a new gate stack in the sacrificial gate vacancy. Some advantages of the current invention may be, harmful effects produced in the source/drain regions by the triangle fin structure are eliminated, the device performance is improved, and the complexity of the process is reduce.
Abstract:
The present invention provides an improved SRAM memory cell based on a DICE structure, which comprises following structures: four inverter structures formed through arranging PMOS transistors and NMOS transistors in series, wherein the part between the drains of a PMOS transistor and an NMOS transistor serves as a storage node; each storage node controls the gate voltage of an NMOS transistor of the other inverter structure and of a PMOS transistor of another inverter structure; a transmission structure consisting of four NMOS transistors, whose source, gate and drain are respectively connected with a bit line/bit bar line, a word line and a storage node. The use of an improved SRAM memory cell based on a DICE structure not only avoids such defects as small static noise margin and being prone to transmission error facing the traditional cell structures consisting of 6 transistors, but also resolves the problem that the current SRAM storage cells based on a DICE structure can easily be affected by the electrical level of storage nodes. This effectively improves reliability of storage cells.
Abstract:
A gating device cell for a cross array of bipolar resistive memory cells comprises an n-p diode and a p-n diode, wherein the n-p diode and the p-n diode have opposite polarities and are connected in parallel, such that the gating device cell exhibits a bidirectional rectification feature. The gating device cell exhibits the bidirectional rectification feature, that is, it can provide a relatively high current density at any voltage polarity in its ON state, and also a relatively great rectification ratio (Rv/2/RV) under a read voltage. Therefore, it is possible to suppress read crosstalk in the cross array of bipolar resistive memory cells to avoid misreading, thereby solving the problem that a conventional rectifier diode is only applicable to a cross array of unipolar resistive memory cells.
Abstract:
A vertical channel-type 3D semiconductor memory device and a method for manufacturing the same are disclosed. In one aspect, the method includes depositing alternating insulating and electrode layers on a substrate to form a multi-layer film. The method further includes etching the film to the substrate to form through-holes, each of which defines a channel region. The method further includes depositing barrier, storage, and tunnel layers in sequence on inner walls of through-holes to form gate stacks. The method further includes depositing and incompletely filling a channel material on a surface of the tunnel layer of gate stacks to form a hollow channels. The method further includes forming drains in contact hole regions for bit-line connection in top portions of the hollow channels. The method further includes forming sources in contact regions between the through-holes and the substrate in bottom portions of the hollow channels.
Abstract:
A TI-IGBT, comprising a first semiconductor substrate, a second semiconductor substrate, and a first doped layer; a short circuit region and a collector region disposed in parallel are formed in the first semiconductor substrate; the short circuit region and the collector region have different doping types; the second semiconductor substrate is located on the upper surface of the first semiconductor substrate, and has the same doping type with the short circuit region; the first doped layer is located between the first semiconductor substrate and the second semiconductor substrate, and covers at least the collector region; the first doped layer has the same doping type with the second semiconductor substrate, and has a doping concentration smaller than that of the second semiconductor substrate.