Abstract:
PURPOSE: Provided are method for completely treating carbon electrode with lithium which is used for enhancing a capacity and a cycle life of the carbon electrode, and a method for producing lithium secondary cell using the same. CONSTITUTION: The method for completely treating carbon electrode with lithium comprises the steps of (i) treating a carbon electrode with lithium by varying a temperature and ionic conductivity under the state which carbon electrode and lithium metal are connected or contacted with each other by resistance, (ii) stabilizing the treated carbon electrode at the predetermined temperature for the predetermined period to form a stable film on the surface of carbon electrode, thereby enhancing a reversibility in charging/discharging.
Abstract:
PURPOSE: A method for manufacturing a multicomponent system solid high molecule electrolyte is provided to contain an excellent adhesion and a mechanical strength for easily manufacturing a battery. CONSTITUTION: A multicomponent system solid high molecule electrolyte comprises: more than one compounds selected from a group composed of 0¯80 % of a poly-acrylonitrile(PAN) system compound, 0¯80 % of a PVC system compound, and 0¯80 % of a poly-vinylidene fluoride(PVdF) system compound while a whole weight of the compound is 100 wt%; and 5¯90 wt% of a poly-methyl-methacrylate(PMMA) system compound.
Abstract:
PURPOSE: The production method of two-component system solid high molecule electrolyte is provided to easily make a battery having a superior adhesive strength and mechanical strength and battery efficiency. CONSTITUTION: The production method of two-component system solid high molecule electrolyte comprises the steps of: mixing PAN/PVC class compound mixed PAN compound and PVC compound in the ratio of 10:1¯1:5 wt% with a plasticizer and an organic solvent; high molecule blending to form a matrix of a solid high molecule electrolyte; casting and drying to get a solid high molecule membrane; injecting the organic solvent electrolyte melted lithium.
Abstract:
본 발명은 복합 고체고분자 전해질 및 리튬고분자 전지의 제조방법에 있어서, PAN계 전해질인 경우 강도가 떨어지고, dry room에서 제조해야 하는 제조상의 어려움과, 또한 PVdF계 전해질은 접착력이 불량하여 전극 및 전지 제조시 가열 lamination과 추출공정을 필요로 하는 단점 및 고체고분자 제조시 가소제의 추출과정과 유기용매 전해질의 함침과정이 요구되어 제조공정이 까다로운 문제점을 해결하기 위한 것으로, 기지고분자로 PAN계와 PVdF계를 혼합한 것을 사용하여 SiO 2 , 가소제, 유기용매를 혼합하고, 가열하여 blending된 고체고분자 매트릭스를 형성시킨 후, 캐스팅하여 건조하고 유기용매 전해질을 주입하여 고체고분자 전해질을 제조하는 방법과, 상기의 고체고분자 전해질, 음·양극을 적층하고 유기용매 전해질을 주입하여 전지 성능이 우수한 리튬� ��분자 전지의 제조방법을 제공한다.
Abstract:
본 발명은 고체고분자 전해질 및 리튬고분자 전지의 제조방법에 있어서, PAN계 전해질의 기계적 안정성의 저하와, PVdF계 전해질의 접착력이 불량하여 전극 및 전지 제조시 가열 lamination과 추출공정을 필요로 하는 단점을 해결하기 위한 것으로, PAN계와 PVdF계를 blending하여 복합 고분자 전해질을 제조하여 PAN계 전해질의 우수한 접착력과 이온전도도를 그대로 유지하고 PVdF계 하이브리드형 전해질의 우수한 기계적 강도와 이온전도도를 유지함으로써 PAN계 전해질의 기계적 안정성을 향상시켰고, PVdF계 하이브리드형 전해질 제조시 가소제의 추출과정과 유기용매 전해질의 주입공정을 제거하였으며, 또한 PVdF 전해질의 접착력 문제를 해결하는 리튬고분자 전지용 고체고분자 전해질의 제조방법과, 고체고분자 전해질을 사용하여 복합 음·양극을 제조하고 � �들을 적층하여 접착력과 기계적 안정성이 우수하고 전지성능이 우수한 리튬고분자 전지의 제조방법을 제공하였다.