Abstract:
본 발명은 리튬 이차전지 금속산화물 전극활물질의 재활용 방법에 관한 것이다. 본 발명은 리튬 이차전지의 제조 공정 중 발생하는 금속산화물 전극활물질을 함유하는 전극 스크랩을 마련하는 제1 단계; 상기 전극 스크랩을 공기 분위기 또는 공기 및 질소 혼합 가스 분위기에서 열처리하여 상기 전극 스크랩 내에 존재하는 결착재를 탄화시키는 제2 단계; 및 상기 전극 스크랩으로부터 금속산화물 전극활물질을 회수하는 제3 단계;를 포함하는 것을 특징으로 한다. 본 발명에 의하면 간단한 물리적인 열처리 및 분리 방법에 의해 환경오염을 최소화하고, 단순한 공정과 저렴한 비용으로 전극 및 전지 제조 공정 중 발생하는 전극 스크랩 혹은 전지 내에 포함되어 있는 금속산화물 전극활물질을 재활용할 수 있다.
Abstract:
PURPOSE: A manufacturing method of a LiFePO4 positive electrode active material is provided to reduce costs and to prevent air pollution by using a positive active material that a positive electrode scrap is recycled or retreated. CONSTITUTION: A manufacturing method of a LiFePO4 positive electrode active material comprises a step of heat-treating LiFePO4 positive active material-containing positive electrode scraps (S1); a step of collecting LiFePO4 positive active material by separating a current collector from the positive electrode scraps (S2); a step of heat-treating the LiFePO4 positive active material (S3); a step of dissolving the LiFePO4 positive active material in an acid solution and precipitating FePO4 by injecting ammonia water into the solution (S4); a step of obtaining FePO4 solid contents by filtering the solution (S5); a step of obtaining crystalline FePO4 or Fe2P2O7 by heat-treating the FePO4; and a step of mixing a lithium compound and a carbon source into the FePO4 or Fe2P2O7, and heat-treating the mixture to manufacture the LiFePO4 positive active material (S7). [Reference numerals] (AA) LiFePO4 positive active material; (S1) Heat-treat LiFePO4 positive electrode scraps; (S2) Separate a current collector; (S3) Heat-treat LiFePO4 positive active material in the air; (S4) Dissolve in an acid solution and inject ammonia water into the solution -> Precipitate FePO4; (S5) Filter the precipitate; (S6) Heat-treat FePO4 precipitate in the air or hydrogen -> crystallize into FePO4 or Fe2P2O7; (S7) Mix and heat-treat a lithium compound to satisfy Li:Fe=1:1
Abstract:
본 발명은 나노리본상 그라핀을 기초 소재로 사용하는 리튬이온전지 전극 및 그 제조방법에 관한 것으로서, 본 발명의 그라핀 리튬이온전지 전극은 금속 박막과 나노리본상 그라핀을 포함하는 것이고, 상기 나노리본상 그라핀은 두께가 0.3 ~ 0.4 ㎚이고, 폭은 2 ~ 5 ㎚이고, 길이가 5~10 ㎚인 것일 수 있고, 본 발명의 리튬이온전지는 본 발명의 그라핀 리튬이온전지 전극, 상대전극, 상기 그라핀 리튬이온전지 전극과 상기 상대전극 사이에 위치하는 격리막 및 전해액을 포함하는 것이고, 본 발명의 그라핀 리튬이온전지 전극의 제조방법은 (a) 나선형 또는 입자형 흑연구조체를 기계적으로 밀링하여 나노리본상 그라핀을 준비하는 단계, (b) 상기 나노리본상 그라핀을 용액에 분산시켜 그라핀 분산 슬러리를 제조하는 단계, 및 (c) 상기 그라핀 분산 슬러리를 금 속 박막 상에 도포하여 그라핀 리튬이온전지 전극을 형성하는 단계를 포함하는 것이다.
Abstract:
PURPOSE: A manufacturing method of a silicate-based electrode active material is provided to ensure the particle size and composition uniformity of a silicate electrode active material by the use of microwaves as a heating source. CONSTITUTION: A manufacturing method of an electrode active material represented by chemical formula Li2MSiO4 comprises: a step of dispersing a silicon compound into a solvent; a step of mixing lithium salt and transition metal salt into the solution, and forming a complex ion by adding a chelating agent into the mixture; and a step of gelating the mixture through a microwave treatment. In the chemical formula, M is Mn, Fe, Co, Ni, Ti, V, Cr or a mixture thereof. The molar ratio of the lithium salt and the transition metal salt is 2:1.
Abstract:
PURPOSE: An electrode for lithium ion battery is provided to be used for a lithium secondary battery which requires high rate charging by maintaining excellent charging/discharging capacity until 100 cycles and improving rate capability in 2C condition(30 minutes charging/discharging rate). CONSTITUTION: An electrode for lithium ion battery comprises a metal foil and nanoribbon graphene. A manufacturing method of the graphene lithium ion battery electrode comprises: a step of preparing nanoribbon graphene by mechanically milling a spiral or granular graphite structure; a step of preparing graphene-dispersed slurry by dispersing the nanoribbon graphene into solution; and a step of forming a graphene lithium ion battery electrode by spreading the graphene-dispersed slurry on the metal foil. [Reference numerals] (AA) Step of preparing graphene(nanoribbon phase); (BB) Manufacturing nanoribbon graphene through a mechanical method; (CC) Step of manufacturing a composition; (DD) Step of dispersing graphene nanoribbon and mixing a conductive agent, binder, etc; (EE) Step of manufacturing Li-ion electrode
Abstract:
An improved method for preparing a carbon composite by coating the activated silicon precursor on surfaces of graphite-based or coke-based carbon particles by a plasma spray coating method after activating a silicon precursor by plasma is provided. A preparation method of a carbon composite comprises the processes of: injecting an inert gas and graphite-based or coke-based carbon particles into a reactor on which a rotor is mounted, thereby suspending the carbon particles by a rotary power of the rotor mounted on the reactor; and activating a silicon precursor by plasma, and injecting the activated silicon precursor into the reactor, thereby forming a nano-sized coating layer with a cluster shape on surfaces of the carbon particles. Further, the preparation method comprises a process or spraying the activated silicon precursor by a plasma spray coating method after activating a silicon precursor by plasma. The silicon precursor is a mixture of one or more selected from SiH4, SiH2Cl2, SiH3Cl, SiCl4, Si2Cl6, and Si(OC2H5)4.
Abstract:
본 발명은 리튬이차전지 및 그 제조방법을 제공한다. 보다 구체적으로는, 본 발명은 초극세 섬유상의 다공성 고분자 분리막을 포함하는 리튬이차전지 및 그 제조방법에 관한 것으로서, 상기 다공성 고분자 분리막은 a) 하나 이상의 고분자를 용융시키거나 또는 하나 이상의 고분자를 유기 용매에 용해시켜 용융 고분자 또는 고분자 용액을 얻는 단계, b) 상기 용융 고분자 또는 고분자 용액을 전하유도 방사장치 (electrospinning machine)의 배럴 (barrel)에 투입하는 단계, 및 c) 상기 용융 고분자 또는 고분자 용액을 기판 상에 노즐을 통하여 전하유도 방사시켜 다공성 분리막을 형성시키는 단계를 포함하는 방법에 의하여 제조된다. 본 발명의 리튬이차전지는 전극과의 접합성, 기계적 강도, 저온 및 고온 특성, 리튬이차전지용 유기 전해액과의 호환성이 우수하다.
Abstract:
본 발명은 다공성 3차원 집전체의 기공 내에 전극 활물질이 균일하게 분포되어 있는 전극과 이를 이용한 캐패시터, 및 그 제조방법에 관한 것이다. 본 발명에 따른 전극은 전기 전도도가 우수하고, 전극 표면의 전위 분포도가 일정하게 유지되며, 전극 활물질의 이탈이 방지되므로 전극 활물질의 이용률, 사이클 수명 및 고율 충방전 특성이 우수하다.
Abstract:
PURPOSE: An electrode for a lithium battery, its preparation method and a lithium secondary battery containing the electrode are provided, to improve conductivity, to allow the distribution of potential on electrode surface to be maintained to be constant and to prevent the separation of an electrode active material by allowing an electrode active material to be distributed uniformly in the pores of a porous 3D current collector. CONSTITUTION: The electrode comprises 70-95 wt% of a mixture of an electrode active material(1), a binder and a conductor charged uniformly in the pores of a porous 3D current collector(2). Preferably the porous 3D current collector is a foamed metal, a metal fiber, a porous metal, an etched metal or a both-sides uneven metal, and is made of a material selected from the group consisting of Ni, Cu, SUS, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi and Sb.