Abstract:
The present invention relates to a method for separating carbon dioxide from mixed gas containing the carbon dioxide and, more particularly, to a method for using an amino silane group as a mixed solvent in a carbon dioxide separation apparatus including an absorption tower and a stripping tower. The method for separating carbon dioxide using the mixed solvent of the present invention includes: a step in which a carbon dioxide-mixed solvent is supplied to an upper portion of the absorption tower and the mixed gas containing carbon dioxide is introduced to a lower portion of the absorption tower so that the carbon dioxide contained in the mixed gas is absorbed into the mixed solvent; a step in which the mixed solvent into which the carbon dioxide is absorbed is sent to a re-evaporation tank (flash tank) and the carbon dioxide is stripped by pressure difference; and a step in which the mixed solvent which passes through the re-evaporation tank is sent to the stripping tower and is heated to strip the carbon dioxide. In the method for separating carbon dioxide, an amino silane-based mixed solvent is used as the mixed solvent. The amino silane solvent of the present invention has a higher carbon dioxide absorption performance and removal efficiency than existing commercial solvents, and thus capturing costs can be saved in process application. In addition, the low volatility results in excellent safety and economic feasibility in a process operation.
Abstract:
The present invention relates to a method for calculating regenerative heat of a chemical absorbent for carbon dioxide. The regenerative energy of a chemical absorbent for carbon dioxide is calculated by obtaining and calculating parameters using a device in a short term instead of obtaining test values of the regenerative energy of a chemical absorbent for carbon dioxide via process operation, calculating the current heat of the absorbent from the result of measuring reaction heat and specific heat of the absorbent in the process of measuring a combustion phenomenon before and after the reaction of the absorbent for carbon dioxide, calculating the latent heat for evaporation of a solvent, and summing all the values. The method for calculating regenerative heat of an absorbent for carbon dioxide from the sum of the latent heat for evaporation, the reaction heat for absorption and the current heat comprises the steps of: calculating the latent heat for evaporation of the absorbent for carbon dioxide; measuring the reaction heat for absorption of the absorbent for carbon dioxide; and calculating the specific heat of carbon dioxide before and after reaction in the process of measuring the heat capacity before reaction of the absorbent for carbon dioxide and the heat capacity after reaction of the absorbent for carbon dioxide in a state of being completely saturated with carbon dioxide, and calculating the current heat therefrom.
Abstract:
The present invention relates to a manufacturing method of metal catalysts with enhanced alcohol yield, and a manufacturing method of a metal catalyst to produce alcohol from synthetic gas. The manufacturing method comprises a first step of forming a metal catalyst and a second step of irradiating the metal catalyst with gamma rays. The present invention stabilizes the metal catalyst by emitting the gamma rays, thereby suppressing hydrocarbon generation and accordingly there is an effect of providing a metal catalyst with enhanced alcohol yield.
Abstract:
Disclosed are an ether-functionalized immidazolium-based ionic liquid and a separating method of carbon dioxide using the same. The ether-functionalized imidazolium-based ionic liquid has excellent carbon dioxide absorbing ability. The absorbed carbon dioxide is easily attached and detached by heating, so the ether-functionalized imidazolium-based ionic liquid has user convenience, selectivity, thermal stability, and long lifetime, thereby being useful for collecting CO2.
Abstract:
본 발명은 이산화탄소 흡수 방법에 관한 것으로서, 이산화탄소 흡수공정에서 염의 생성을 최소화하고, 발생된 염을 효과적으로 제거함으로써 재생에너지를 최소화할 수 있는 이산화탄소 흡수 공정에 관한 것이다. 본 발명의 이산화탄소 흡수 공정은 알칼리탄산염에 입체장애 시클릭 아민이 첨가된 이산화탄소 흡수제에 이산화탄소가 포함된 기체를 접촉시키는 기체 접촉단계; 상기 기체로부터 이산화탄소를 흡수하는 이산화탄소 흡수단계; 상기 이산화탄소가 흡수된 흡수제에서 염을 분리하는 공정; 상기 염이 분리된 흡수제를 재생하는 단계를 포함한다.
Abstract:
본원은 La 1-x Sr x Ti 1-y Fe y O 3-δ 로 코팅된 Ba 1-x Sr x Co 1-y Fe y O 3-δ 의 조성을 갖는 이온전도성 산소분리용 분리막 및 이의 제조방법을 제공한다. La 1-x Sr x Ti 1-y Fe y O 3-δ 로 보호 코팅된 본원의 Ba 1-x Sr x Co 1-y Fe y O 3-δ 분리막은 코팅되지 않은 분리막과 비교하여 현저히 향상된 산소투과도 및 열적 안정성을 가져 이산화탄소를 함유하는 공기로부터 산소 분리 등에 유용하게 사용될 수 있다.
Abstract:
PURPOSE: A method for synthesizing sulfonate-based ionic liquid for separating carbon dioxide is provided to prepare 1-(2-methoxyethyl)-3-methylimidazolnium methanesulfonate and to ensure a stable physical property. CONSTITUTION: A method for synthesizing 1-(2-methoxyethyl)-3-methylimidazolnium methansulfonate ionic liquid comprises: a step of adding 2-methoxyethy methanesulfonate and 1-methylimidazole in a beaker, injecting dichloromethane as a solvent, and stirring at 50-70 deg. C. and 200-250 rpm for 25-35 hours; a step of removing unreacted materials and the solvent and collecting a synthesized solution; and a step of purifying the synthesized solution. The collection step comprises a step of removing the solvent by decompression; a step of repetitively washing the solvent-removed solution using ethyl acetate; and a step of removing the washing solution and collecting the synthesized solution. [Reference numerals] (AA) Step of stirring 2-methoxyethy methanesulfonate and 1-methylimidazole by injecting a solvent; (BB) Step of collecting a synthesized solution by removing the solvent and unreacted materials; (CC) Step of purifying the synthesized solution by filtering with a filter; (DD) Step of drying by removing residual moisture
Abstract:
PURPOSE: A manufacturing method of phenolate based ionic liquid, a product, and a separation method of carbon dioxide using thereof are provided to improve absorption of carbon dioxide, absorbing rate, and a playability and lower unit price. CONSTITUTION: A manufacturing method of phenolate based ionic liquid is processed by synthesizing imidazolium based cation and phenolate negative ion. The imidazolium based cation is (bmim)1-butyl-3-methylimidazolium, (emim)1-ethyl-3-methyimidazolium, or (hmim)1-hexyl-3-methyimidazolium. A phenolate based ionic liquid manufacturing method comprises the next steps: stirring after respectively mixing imidazolium based cation Cl and Na-phenolate with methanol solvent; synthesizing by stirring after mixing imidazolium based cation Cl which is mixed with methanol solvent with Na-phenolate; and refining process which eliminates materials which did not react and NaCl which is by-products of processed solution.
Abstract:
PURPOSE: An ionic liquid-polymer gel membrane and a method for fabricating the same are provided to improve gas transmittance by being manufactured based on ionic liquid dispersed in a polymer gel. CONSTITUTION: Polymer, ionic liquid, and propylene carbonate as a solvent are mixed to obtain mixed solution. The solvent is evaporated to dry the mixed solution. The polymer is one or two selected from a group including polyvinylidene fluoride-hexafluoropropyl copolymer, polyvinylidene fluoride, polysulfone, polyether sulfone, polytera fluoroethylene, polyethylene, polycarbonate, polypropylene, polyvinylalcohol, polyphenylene sulfide, cellulose actate, polyamide, and polyacrylonitrile.
Abstract:
PURPOSE: A carbon dioxide absorbing agent containing hindered cyclic amines and a method for eliminating carbon dioxide using the same are provided to improve the speed of a carbon dioxide absorbing process and reducing regenerated energy. CONSTITUTION: A method for eliminating carbon dioxide using a carbon dioxide absorbing agent containing hindered cyclic amines includes the following: A carbon dioxide absorbing agent includes 16 wt% or less of alkaline carbonate and 10 wt% or less of hindered cyclic amines. The carbon dioxide absorbing agent is in contact with gas containing carbon dioxide(S110). The carbon dioxide is absorbed to the carbon dioxide absorbing agent(S120). The carbon dioxide absorbing agent is regenerated(S130).