Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A system for applying a two-part adhesive to a substrate includes a prime mover for providing an output torque, a first pump connected to the prime mover for receiving the output torque, the first pump having an inlet and an outlet, a second pump connected to the prime mover for receiving the output torque, the second pump having an inlet and an outlet, a first compound in communication with the inlet of the first pump, a second compound in communication with the inlet of the second pump, a first accumulator in communication with the outlet of the first pump, a second accumulator in communication with the outlet of the second pump, a first manifold in communication with the outlet of the first pump, and a second manifold in communication with the outlet of the second pump. A plurality of applicators is included.
Abstract:
A liquid dispenser gun (14) for mixing first and second liquid components of a two-component mixture (1 1 ) and dispensing the two- component mixture (1 1 ) includes a gun body (78), a mixing manifold (82), and a nozzle plate (84). The gun body (78) includes a gun body fluid passage (94) in fluid communication with gun body inlets (38, 50, 56) and the mixing manifold (82). The gun body fluid passage (94) is a groove in a bottom surface (79) of the gun body (78) having a generally non-linear shape such that the second component has a generally laminar flow through the gun body fluid passage (94) while a flushing component may be introduced in the gun body fluid passage (94) in a manner to produce turbulence in the flushing component.
Abstract:
A laminated nozzle assembly (110) is provided. The laminated nozzle includes a first end plate (112) having a first fluid inlet (126) and a second fluid inlet (130), a second end plate (114), a plurality of nozzle plates (116, 118, 120, 122, 124) positioned and clamped between the first end plate and the second end plate, a first fluid conduit (128) in fluid communication with the first fluid inlet formed in one or more of the nozzle plates, a second fluid conduit (132) in fluid communication with the second fluid inlet formed in one or more of the nozzle plates, a first orifice (134) in fluid communication with the first fluid conduit formed in one of the nozzle plates, and a second orifice (136) in fluid communication with the second fluid conduit formed in the same nozzle plate as the first orifice. The laminated nozzle assembly minimizes the number of nozzle plates and includes no more than eight, and preferably no more than five nozzle plates.