PRESSURE SENSOR
    101.
    发明申请
    PRESSURE SENSOR 审中-公开
    压力传感器

    公开(公告)号:WO2009006938A1

    公开(公告)日:2009-01-15

    申请号:PCT/EP2007/056969

    申请日:2007-07-09

    CPC classification number: G01L11/025 G01L1/241

    Abstract: A pressure sensor (18) with at least one optical sensing element (10) is disclosed, the pressure induced changes in the birefringent properties of which are read out by transmission of at least one light beam (2, 21). The pressure sensor (18) is particularly characterised in that it comprises at least one single-material transparent body (10) which is subjected to at least two different pressures (p1, p2) in at least two different regions via at least two pressure chambers (8, 9), wherein the transparent body (10) is transmitted by a parallel or minimally divergent light beam without total reflexion in said body (10) such that the pressure-induced birefringence and the corresponding differential phase shift between the linear polarisation components of this light beam (22) depends on the difference of the different pressures (p1, p2).

    Abstract translation: 公开了一种具有至少一个光学传感元件(10)的压力传感器(18),通过至少一个光束(2,21)的透射来读出其双折射性质的压力感应变化。 压力传感器(18)的特征在于,它包括至少一个单材料透明体(10),其通过至少两个压力室在至少两个不同区域经受至少两个不同的压力(p1,p2) (8,9),其中所述透明体(10)通过平行或最小发散的光束透射,而在所述主体(10)中没有全反射,使得压力引起的双折射和线偏振分量 的光束(22)取决于不同压力(p1,p2)的差异。

    応力測定方法とその装置
    102.
    发明申请
    応力測定方法とその装置 审中-公开
    应力测量方法和仪器

    公开(公告)号:WO2005068957A1

    公开(公告)日:2005-07-28

    申请号:PCT/JP2004/002918

    申请日:2004-03-05

    CPC classification number: G01L5/0047 G01L1/241

    Abstract: 試料あるいは光学系全体を回転させずに、試料半導体ウエハの応力を高精度に絶対値として検出する。PEM6でレーザ光Rに光弾性変調を受けて、複屈折位相差を発生し、第1及び第2の1/4波長板を通過した後に検出する。この基準信号データは信号処理装置に記憶される。PEM6で光弾性変調を受けて1/4波長板を通過した偏光波のレーザ光Rは複屈折位相差があり、残留応力を有する半導体ウエハDを通過する。試験片に透過させた場合は、試験片の応力の方向は、直線偏光とのなす角が互いに0度と90度の時に検出する。この透過電気信号をアナログ/デジタル変換器16に送る。この信号を信号処理装置に入力して、そこで透過信号データを生成する。信号処理装置は、記憶された基準信号データとこの透過信号データとを読み出し、これらから、基準複屈折位相差と複屈折位相差の絶対値とを算出する。

    Abstract translation: 一种用于在不旋转样品或整个光学系统的情况下以高精度以绝对值的形式测量样品半导体晶片的应力的方法和仪器。 激光R在PEM(6)中进行光弹性调制以产生双折射相位差,然后通过第一和第二四分之一波长板并检测。 该参考信号数据存储在信号处理器中。 在PEM(6)中进行光弹性调制并通过四分之一波长板的偏振波的激光R具有双重折射相位差并通过具有残余应力的半导体晶片D. 当通过测试件时,当激光R和线偏振光之间的角度在0-90°之间时,检测试片的应力方向。 发送的电信号被传送到模拟/数字转换器(16),并且信号被输入到信号处理器,从而产生发送信号数据。 信号处理器读出存储的参考信号数据和从其计算参考双折射相位差及其绝对值的发送信号数据。

    SMART MATERIALS: STRAIN SENSING AND STRESS DETERMINATION BY MEANS OF NANOTUBE SENSING SYSTEMS, COMPOSITES, AND DEVICES
    103.
    发明申请
    SMART MATERIALS: STRAIN SENSING AND STRESS DETERMINATION BY MEANS OF NANOTUBE SENSING SYSTEMS, COMPOSITES, AND DEVICES 审中-公开
    智能材料:纳米管传感系统,复合材料和器件的应变传感和应力测定

    公开(公告)号:WO2004065926A1

    公开(公告)日:2004-08-05

    申请号:PCT/US2004/001708

    申请日:2004-01-23

    Abstract: The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

    Abstract translation: 本发明涉及包括能够检测材料中的位移,冲击,应力和/或应变的碳纳米管的装置,制造这种装置的方法,用于感测/检测/监测位移,冲击,应力和/或 通过碳纳米管的应变,以及用于这种方法和装置的各种应用。 本发明的装置和方法都依赖于碳纳米管内机械诱导的电子扰动来检测和量化这种应力/应变。 这种检测和定量可以依赖于包括但不限于导电性/电导性和/或电阻率/电阻检测/测量,热导率检测/测量,电致发光检测/测量,光致发光检测/测量及其组合的技术 。 所有这些技术都依赖于对这些性质如何响应于机械应力和/或应变而变化的理解。

    INTRINSIC BIREFRINGENCE COMPENSATION FOR BELOW 200 NANOMETER WAVELENGTH OPTICAL LITHOGRAPHY COMPONENTS WITH CUBIC CRYSTALLINE STRUCTURES
    104.
    发明申请
    INTRINSIC BIREFRINGENCE COMPENSATION FOR BELOW 200 NANOMETER WAVELENGTH OPTICAL LITHOGRAPHY COMPONENTS WITH CUBIC CRYSTALLINE STRUCTURES 审中-公开
    具有CUBIC晶体结构的200纳米波长光学成像组件的内部双向补偿

    公开(公告)号:WO2003009050A1

    公开(公告)日:2003-01-30

    申请号:PCT/US2002/022498

    申请日:2002-07-16

    Abstract: Stress-induced photoelastic birefringence compensates for intrinsic birefringence of cubic crystalline structures (12) in deep ultraviolet (less than 200 nm) microlithographic imaging systems (10). Both the photoelastic birefringence and the intrinsic birefringence are expressed in a tensor format simplified by the symmetries of cubic crystalline structures. The stress-induced photoelastic birefringence can be sized to individually compensate for intrinsic birefringence exhibited in the same optical elements or preferably to collectively compensate for the cumulative effects of intrinsic birefringence in other optical elements in the lithography system.

    Abstract translation: 应力诱导的光弹性双折射补偿了深紫外(小于200nm)微光刻成像系统(10)中立方晶体结构(12)的固有双折射。 光弹性双折射和本征双折射均以立方晶体结构的对称性简化的张量形式表示。 应力诱导的光弹性双折射的尺寸可以单独地补偿在相同的光学元件中显示的本征双折射,或优选地共同地补偿在光刻系统中的其它光学元件中的本征双折射的累积效应。

    微小領域物性計測方法及び装置
    105.
    发明申请
    微小領域物性計測方法及び装置 审中-公开
    测量微区物理性质的方法和装置

    公开(公告)号:WO2002068944A1

    公开(公告)日:2002-09-06

    申请号:PCT/JP2001/001484

    申请日:2001-02-28

    Abstract: A method and apparatus for measuring physical properties of a micro region in which the two-dimensional distribution of stress or strain can be measured in real time with high resolution, high sensitivity and high alignment of measuring position. A sample is scanned with a finely focused electron beam (23, 26), and the positional difference between the diffraction spots (32, 33) is measured by means of a two-dimensional position sensitive electronic sensor (13). The positional difference is outputted as a voltage value and converted into a magnitude of stress or strain according to the principle of nanodiffraction method ,and the distribution of the stress or strain is displayed as an image in synchronism with a position signal on the sample.

    Abstract translation: 用于测量微区域的物理性质的方法和装置,其中可以实时测量应力或应变的二维分布,具有高分辨率,高灵敏度和测量位置的高对准。 用精细聚焦的电子束(23,26)扫描样品,并且通过二维位置敏感电子传感器(13)测量衍射斑点(32,33)之间的位置差异。 将位置差作为电压值输出,并根据纳米衍射法的原理转换成应力或应变的大小,应力或应变的分布与样品上的位置信号同步显示为图像。

    A SYSTEM AND METHOD FOR MEASURING THE INTERFACE TENSILE STRENGTH OF PLANAR INTERFACES
    106.
    发明申请
    A SYSTEM AND METHOD FOR MEASURING THE INTERFACE TENSILE STRENGTH OF PLANAR INTERFACES 审中-公开
    用于测量平面界面的界面拉伸强度的系统和方法

    公开(公告)号:WO1994020829A1

    公开(公告)日:1994-09-15

    申请号:PCT/US1994002268

    申请日:1994-03-02

    CPC classification number: G01L1/241

    Abstract: A system for measuring the tensile strength of a planar interface between a substrate (30) and a coating (32) which includes an energy source (20) that generates an electromagnetic beam (24) along a first axis, and a sample assembly disposed along the first axis having a first face, and a second face, where the first and second faces are oppositely opposed. The sample assembly includes a confining plate (26), an energy absorbing layer (28), a substrate (30) and a coating (32) having a free surface, all in intimate facing contact with each other, and where the sample (30) and a coating (32) having a free surface, all in intimate facing contact which each other, and where the sample (30) and the coating (32) are in intimate facing contact forms a substrate/coating interface. The coating (32) is positioned along the first axis so that the coating (32) free surface forms the sample assembly second face and the confining plate (26) forms the sample assembly first face.

    Abstract translation: 一种用于测量衬底(30)和涂层(32)之间的平面界面的拉伸强度的系统,其包括沿着第一轴线产生电磁束(24)的能量源(20)和沿着第一轴线生成的样品组件 所述第一轴具有第一面和第二面,其中所述第一面和所述第二面相对地相对。 样品组件包括限制板(26),能量吸收层(28),基底(30)和具有自由表面的涂层(32),所有这些都具有彼此紧密的接触,并且其中样品(30 )和具有彼此紧密接触的自由表面的涂层(32),并且样品(30)和涂层(32)紧密接触的接触形成基底/涂层界面。 涂层(32)沿着第一轴线定位,使得涂层(32)游离表面形成样品组件第二面,并且限制板(26)形成样品组件第一面。

    APPARATUS AND METHOD FOR SMART MATERIAL ANALYSIS

    公开(公告)号:US20180328722A1

    公开(公告)日:2018-11-15

    申请号:US15594116

    申请日:2017-05-12

    Inventor: Enrico BOVERO

    Abstract: A method of inspecting a structure including a photonic material using a movable inspection apparatus includes irradiating a section of the structure, receiving radiation diffracted from a photonic material in the section of the structure, determining a deformation of the photonic material as a function of at least one of i) an intensity of the radiation received ii) a position of the radiation received and iii) a wavelength of the radiation received, and determining if a magnitude of the deformation is higher than a threshold. If the magnitude of the deformation is higher than the threshold data is stored concerning the deformation of the photonic material; contrarily, if the magnitude of the deformation is not higher than the threshold: the inspection at the location of the photonic material is stopped and the inspection apparatus is moved in order to inspect another section of the structure.

    STRAIN SENSOR AND RECORDING MEDIUM
    110.
    发明申请

    公开(公告)号:US20180113036A1

    公开(公告)日:2018-04-26

    申请号:US15793348

    申请日:2017-10-25

    CPC classification number: G01L1/241 G01B11/16 G01B11/18

    Abstract: A strain sensor includes a marker, detectors and a calculator. The marker is disposed on a surface of a measurement object and includes a strain body and surface plasmon generating particles. In the strain body, a strain is formed by a load. The surface plasmon generating particles are arranged in two directions which are parallel to two in-plane directions of a light receiving surface of the strain body. The first detector detects a spectral intensity of a light which has been reflected on the marker or has passed through the marker. The second detector detects absorption spectral peaks corresponding to the respective array directions of the particles from the spectral intensity. The calculator calculates the quantity of the strain of the marker based on a difference in wavelength of the two absorption spectral peaks.

Patent Agency Ranking