Abstract:
A pressure sensor (18) with at least one optical sensing element (10) is disclosed, the pressure induced changes in the birefringent properties of which are read out by transmission of at least one light beam (2, 21). The pressure sensor (18) is particularly characterised in that it comprises at least one single-material transparent body (10) which is subjected to at least two different pressures (p1, p2) in at least two different regions via at least two pressure chambers (8, 9), wherein the transparent body (10) is transmitted by a parallel or minimally divergent light beam without total reflexion in said body (10) such that the pressure-induced birefringence and the corresponding differential phase shift between the linear polarisation components of this light beam (22) depends on the difference of the different pressures (p1, p2).
Abstract:
The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.
Abstract:
Stress-induced photoelastic birefringence compensates for intrinsic birefringence of cubic crystalline structures (12) in deep ultraviolet (less than 200 nm) microlithographic imaging systems (10). Both the photoelastic birefringence and the intrinsic birefringence are expressed in a tensor format simplified by the symmetries of cubic crystalline structures. The stress-induced photoelastic birefringence can be sized to individually compensate for intrinsic birefringence exhibited in the same optical elements or preferably to collectively compensate for the cumulative effects of intrinsic birefringence in other optical elements in the lithography system.
Abstract:
A method and apparatus for measuring physical properties of a micro region in which the two-dimensional distribution of stress or strain can be measured in real time with high resolution, high sensitivity and high alignment of measuring position. A sample is scanned with a finely focused electron beam (23, 26), and the positional difference between the diffraction spots (32, 33) is measured by means of a two-dimensional position sensitive electronic sensor (13). The positional difference is outputted as a voltage value and converted into a magnitude of stress or strain according to the principle of nanodiffraction method ,and the distribution of the stress or strain is displayed as an image in synchronism with a position signal on the sample.
Abstract:
A system for measuring the tensile strength of a planar interface between a substrate (30) and a coating (32) which includes an energy source (20) that generates an electromagnetic beam (24) along a first axis, and a sample assembly disposed along the first axis having a first face, and a second face, where the first and second faces are oppositely opposed. The sample assembly includes a confining plate (26), an energy absorbing layer (28), a substrate (30) and a coating (32) having a free surface, all in intimate facing contact with each other, and where the sample (30) and a coating (32) having a free surface, all in intimate facing contact which each other, and where the sample (30) and the coating (32) are in intimate facing contact forms a substrate/coating interface. The coating (32) is positioned along the first axis so that the coating (32) free surface forms the sample assembly second face and the confining plate (26) forms the sample assembly first face.
Abstract:
A method of inspecting a structure including a photonic material using a movable inspection apparatus includes irradiating a section of the structure, receiving radiation diffracted from a photonic material in the section of the structure, determining a deformation of the photonic material as a function of at least one of i) an intensity of the radiation received ii) a position of the radiation received and iii) a wavelength of the radiation received, and determining if a magnitude of the deformation is higher than a threshold. If the magnitude of the deformation is higher than the threshold data is stored concerning the deformation of the photonic material; contrarily, if the magnitude of the deformation is not higher than the threshold: the inspection at the location of the photonic material is stopped and the inspection apparatus is moved in order to inspect another section of the structure.
Abstract:
The invention provides a glass surface stress meter and multiple-tempered glass surface stress meter, and the glass surface stress meter includes a light source (810, 910), a light refraction element (820, 920) and an imaging unit. The light refraction element (820, 920) is provided at a light-emitting direction of the light source (810, 910) for placing a measured glass (970). The light from the light source (810, 910) comes into the imaging unit to imaging after refracted by the light refractive element (820, 920). The imaging unit includes lens group (830, 940) and a imaging sensor (840, 960). A front end of the lens group is provided at the light-refraction direction of the light refraction element (820, 920) and a back-end is provided with the imaging sensor.
Abstract:
A witness material for monitoring an environmental history of an object may include a material containing a dye of a type that fluoresces in response to actinic radiation in one or both of a shift in color and a change in intensity when subjected to a predetermined stress above a predetermined level; and the material forming a coating on one or more of an outer container for the object, an inner container for the object, a tape that is applied to an outer container for the object, a tape that is applied to an inner container for the object, a shrink wrap enclosing the object, an outer surface of the object, and an inner surface of the object.
Abstract:
A strain sensor includes a marker, detectors and a calculator. The marker is disposed on a surface of a measurement object and includes a strain body and surface plasmon generating particles. In the strain body, a strain is formed by a load. The surface plasmon generating particles are arranged in two directions which are parallel to two in-plane directions of a light receiving surface of the strain body. The first detector detects a spectral intensity of a light which has been reflected on the marker or has passed through the marker. The second detector detects absorption spectral peaks corresponding to the respective array directions of the particles from the spectral intensity. The calculator calculates the quantity of the strain of the marker based on a difference in wavelength of the two absorption spectral peaks.