Abstract:
An inspection system having a light source, a mirror sensor, and an image sensor. The mirror assembly is aligned with the camera; the light is reflected from the container to the camera, and the camera creates multiple images of the container at a viewing angle. The multiple images are analyzed to detect defects.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A system for inspecting a glass container and methods of inspecting glass containers are provided. The system includes a panel including a plurality of light sources (110, 112, 114, 122, 124, 126) configured to illuminate the glass container. The system includes a camera configured to image the illuminated glass container from each of the light sources (116, 118, 120, 128, 130, 132). The system includes a controller configured to adjust the amount of power applied to each of the light sources individually. The system includes a processor configured to evaluate the image of the illuminated glass container for indications of defects in the container. Methods of calibrating the system are also provided.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren und ein automatisches Analysegerät zum genaueren Bestimmen der Konzentration von Lipiden und anderen Störsubstanzen in Körperflüssigkeiten, insbesondere von Störsubstanzen wie Bilirubin und Hämoglobin in Blutserum- und Blutplasmaproben.
Abstract:
Described is a system for inducing and detecting multi-photon processes, in particular multi-photon fluorescence or higher harmonic generation in a sample. The system comprises a dynamically-controllable light source, said dynamically-controllable light source comprising a first sub-light source, said first sub-light source being electrically controllable such as to generate controllable time-dependent intensity patterns of light having a first wavelength, and at least one optical amplifier, thereby allowing for active time-control of creation of multi-photon-excitation. The system further comprises a beam delivery unit for delivering light generated by said dynamically-controllable light source to a sample site, and a detector unit or detector assembly for detecting signals indicative of said multi-photon process, in particular multi-photon fluorescence signals or higher harmonics signals.