Abstract:
A method of testing a sample for the presence of nitrate or nitrite, the method comprising the steps of: forming a mixture by contacting the sample with a composition comprising hydrogen peroxide or a hydrogen peroxide precursor and a fluorescent indicator precursor capable of forming a fluorescent indicator in the presence of peroxynitrite; irradiating the mixture; and measuring fluorescence from the fluorescent indicator. The method may be carried out using a device in which the mixture in a channel or chamber 101 of a microfluidic device is irradiated by light from light source 103 and emission from the fluorescent indicator is detected by photodetector 105.
Abstract:
A device for optically exciting fluorescence is disclosed. The device comprises transparent substrate having first and second opposite faces and a multilayer stack disposed on the second face of the substrate. The multilayer stack comprises a first layer having first and second opposite faces and a first refractive index and a second layer having first and second opposite faces and a second refractive index. The first face of the first layer is disposed on the second face of the substrate. The first face of the second layer is disposed on the second face of the first layer such that the first layer is interposed between the second layer and the substrate. The substrate has a third refractive index. The first refractive index is less than the second refractive index and the third refractive index. The device comprises a light source carried by the first face of the substrate and arranged to emit light towards the first face of the first layer.
Abstract:
Die Erfindung betrifft eine Beleuchtungseinrichtung (100, 600) für ein optisches Gerät oder für ein Mikroskop oder für ein Makroskop (200, 300, 400, 500, 700, 800), wobei von einer ersten Beleuchtungsquelle (101, 601) emittiertes Licht über einen Beleuchtungsstrahlengang auf ein in einer Objektebene (106', 606') angeordnetes zu beleuchtendes Objekt (106, 606) gegeben wird, gekennzeichnet durch wenigstens eine in dem Beleuchtungsstrahlengang positionierbare zweite Beleuchtungsquelle (103, 603), welche transparent oder semitransparent sowie selbstleuchtend ausgebildet ist, und von der ersten Beleuchtungsquelle (101, 601) emittiertes Licht wenigstens teilweise durchlässt, wobei die Objektebene (106', 606') mit dem zu beleuchtenden Objekt (106, 606) sowohl von der ersten als auch von der zweiten Beleuchtungsquelle beleuchtet wird.
Abstract:
A straight type sensor includes: a light source; a micro channel disposed on the light-emitting side of the light source; and a photo detector disposed on the micro channel opposite the light source. The light source is constituted by an organic light emitting diode (OLED) which includes as a dopant a boron complex derived from 2-((3,5-dimethylpyrrol-2-ylidene)(4-(dodecyloxy)-2,6-dimethylphenyl)methyl)-3,5-dimethylpyrrole, for example.
Abstract:
An apparatus for differentiating multiple detectable signals comprises a light source (16) that can emit respective excitation light wavelengths toward a sample in a sample retaining region (10).
Abstract:
An apparatus and method are provided for differentiating multiple detectable signals by excitation wavelength. The apparatus can include a light source that can emit respective excitation light wavelengths or wavelength ranges towards a sample in a sample retaining region, for example, in a well. The sample can contain two or more detectable markers, for example, fluorescent dyes, each of which can be capable of generating increased detectable emissions when excited in the presence of a target component. The detectable markers can have excitation wavelength ranges and/or emission wavelength ranges that overlap with the ranges of the other detectable markers. A detector can be arranged for detecting an emission wavelength or wavelength range emitted from a first marker within the overlapping wavelength range of at least one of the other markers.
Abstract:
Optical sensor, probe and array devices for detecting chemical, biological, and physical analytes. The devices include an analyte-sensitive layer (74) optically coupled to a thin film electroluminescent layer (70) which activates the analyte-sensitive layer to provide an optical response.
Abstract:
An assay device for the quantitative determination of the concentration of at least one analyte in a liquid sample comprises a planar emitter (2), a planar detector (3), a lateral flow membrane (4) interposed between the emitter (2) and the detector (3), a conjugate pad (5) in fluid communication with a proximal end of the lateral flow membrane (4), the conjugate pad (5) comprising optically detectable tagging particles bound to a first assay component, a sample pad (6) in fluid communication with the conjugate pad (5) and arranged to receive the liquid sample, and a wicking pad (7) in fluid communication with a distal end of the lateral flow membrane (4). The lateral flow membrane (4) is formed from a light transmissive material and is capable of transporting fluid from the conjugate pad (5) to the wicking pad (7) by capillary action. The lateral flow membrane (4) comprises at least one test region (8, 12) comprising an immobilised second assay component for retaining the tagging particles in the test region (8, 12) in dependence on the binding between the analyte, the first assay component and the second assay component in order to generate a concentration of tagging particles in the test region (8, 12) that is indicative of the concentration of the analyte in the liquid sample. The emitter (2) comprises an emission layer (9, 16) of an organic electroluminescent material and the emission layer (9, 16) is aligned with the test region (8, 12) of the lateral flow membrane 4, whereby the emitter (2) is capable of illuminating the test region (8, 12). The detector (3) comprises an absorption layer (10, 15) of an organic photovoltaic material and the absorption layer (10, 15) is aligned with the test region (8, 12) of the lateral flow membrane 4, whereby the detector (3) is capable of detecting light from the test region (8, 12).
Abstract:
Das kompakte Mikrospektrometer für fluide Medien hat in einem Gehäuse (20b) in fester räumlicher Zuordnung eine Lichtquelle, einen Fluidkanal (28b), ein reflektierendes optisches Gitter (38b) und einen Detektor (40b). Die von der Lichtquelle ausgehende optische Messstrecke durchquert den Fluidkanal und trifft auf das optische Gitter. Die von dem optischen Gitter reflektierten spektralen Lichtkomponenten treffen auf den Detektor.
Abstract:
Ein Sensor (1), insbesondere ein Sauerstoff-Sensor zur Detektion von gasförmigem oder gelöstem Sauerstoff, umfasst: eine organische Leuchtdiode (2); einen ersten Polarisationsfilter (3); eine organischen Fluoreszenz- bzw. Phosphoreszenzschicht (4); einen zweiten Polarisationsfilter (5), und zumindest eine organische Photodiode (6, 12).