Abstract:
A system (10) for determining the concentration of an analyte in at least one body (52) fluid in body tissue, the system comprising an infrared light source (20), a body tissue interface (18,16,33,42), a detector, and a central processing unit (78). The body tissue interface (18,16,33,42) is adapted to contact body tissue (52) and to deliver light from the infrared light source (20) to the contacted body tissue (52). The detector (58) is adapted to receive spectral information corresponding to infrared light transmitted through the portion of body tissue (52) being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit (78) is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid, the algorithm adapted to convert the received spectral information into the concentration of the analyte in at least one body fluid.
Abstract:
PROBLEM TO BE SOLVED: To measure a calorific value of a material body easily and non-destructively in a short period of time, by enabling the calorific value to be measured using near-infrared rays. SOLUTION: An apparatus includes a body holding section 1 having a table 2 on which an object material body to be measured M is mounted; a light source section 20 irradiating the object material body to be measured M which is mounted on the table 2, with light in a near-infrared region; a light receiving section 30 which receives reflected light or transmitted light from the material body M; and a control section 40 which calculates the calorific value of the material body M, based on the absorbance of the light received by the light receiving section 30. In the control section 40, the calorific value of the material body M is calculated from both the absorbance of the light received by the light receiving section 30 and a regression expression previously obtained by applying a multiple linear regression analysis on a secondary differential spectrum of the absorbance of near-infrared rays which are projected onto a sample material body M having a known calorific value and reflected or transmitted from the sample material body M. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Laser-induced fluorescence based optical system and method configured to precisely quantify the relative abundances of calcium (Ca) isotopes in a sample. Optionally, a diode laser is used as a laser source, with its output frequency shifted by two electro-optical modulators to optically excite fluorescence in the calcium-containing sample. The amounts of fluorescence emitted by the various isotopes are measured and compared.
Abstract:
Die Erfindung betrifft ein Verfahren zum Untersuchen einer Probe, wobei die Probe mit Beleuchtungslicht beaufschlagt wird und von der Probe ausgehendes Detektionslicht zu einem Detektor gelenkt wird und wobei das Beleuchtungslicht durch ein akustooptisches Bauteil gelenkt wird, mit dem das Beaufschlagen der Probe mit Beleuchtungslicht zeitweise unterbrochen werden kann. Das Verfahren zeichnet sich dadurch aus, dass die Probe mit einem ersten Beleuchtungslichtbündel, das eine erste Linearpolarisationsrichtung aufweist, und mit einem zweiten Beleuchtungslichtbündel, dessen Linearpolarisationsrichtung fortlaufend zwischen der ersten Linearpolarisationsrichtung und einer zweiten, von der ersten Linearpolarisationsrichtung verschiedenen, Linearpolarisationsrichtung umgeschaltet wird, beleuchtet wird, wobei das Beleuchtungslicht der ersten Linearpolarisationsrichtung entlang einem ersten Lichtweg verläuft und Beleuchtungslicht der zweiten Linearpolarisationsrichtung entlang einem zweiten Lichtweg verläuft, und wobei das akustooptische Bauteil die Lichtwege vereinigt.
Abstract:
본 발명은 파이프 손상 감지 장치 및 방법에 관한 것으로, 파이프에 초음파 신호를 발생시키는 초음파 공급부와, 파이프의 초음파 신호를 수신하는 초음파 수취부 및 초음파 수취부에서 수신한 초음파 신호를 분석하여 파이프의 손상 여부를 판별하는 분석부를 포함한다. 본 발명에 따른 파이프 손상 감지 장치 및 방법은 검사인력의 접근성이 떨어져 관측이 어려운 파이프에 대한 손상 여부를 감지할 수 있다.
Abstract:
A handheld optoacoustic probe includes an ultrasound transducer array and optical fibers with a first end formed into a fiber bundle providing an input and a second, distal end providing an output. A light bar guide retains the distal end of the optical fibers on the same plane. One or more optical windows may be associated with, and spaced from the light bar guide so as to prevent contact between a coupling agent and the distal ends of the optical fibers, thus mitigating a potential acoustic effect of the coupling agent in response to light emitting from the fibers. A silicon rubber acoustic lens doped with TiO2 may be provided, with a reflective metal surrounding the outer surface of the acoustic lens. A handheld probe shell houses the light bar guide, the ultrasound transducer array, and the acoustic lens.
Abstract:
Systems and methods for inspecting a specimen with light at varying power levels are provided. One system configured to inspect a specimen (14) includes a light source (10) configured to generate light. The system also includes a power attenuator subsystem (26) configured to alter a power level of the light directed to the specimen (14) during inspection between at least two power levels including a full power level and a minimum power level equal to or greater than about 10% of the full power level. In addition, the system includes a detection subsystem configured to generate output responsive to the light scattered from the specimen (14). The output can be used to detect defects on the specimen (14). The power a attenuator subsystem may include a wave plate (200) or a Pochel's cell (202).
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.